Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Sparse Modeling - Irina Rish, Genady Grabarnik

Sparse Modeling

Theory, Algorithms, and Applications
Buch | Softcover
236 Seiten
2020
CRC Press (Verlag)
978-0-367-65892-2 (ISBN)
CHF 78,50 inkl. MwSt
This book provides an introduction to the growing field of sparse modeling, including application examples, problem formulations that yield sparse solutions, algorithms for finding such solutions, and recent theoretical results on sparse recovery. It describes optimization problems involving commonly used sparsity-enforcing approaches as well as
Sparse models are particularly useful in scientific applications, such as biomarker discovery in genetic or neuroimaging data, where the interpretability of a predictive model is essential. Sparsity can also dramatically improve the cost efficiency of signal processing.



Sparse Modeling: Theory, Algorithms, and Applications provides an introduction to the growing field of sparse modeling, including application examples, problem formulations that yield sparse solutions, algorithms for finding such solutions, and recent theoretical results on sparse recovery. The book gets you up to speed on the latest sparsity-related developments and will motivate you to continue learning about the field.



The authors first present motivating examples and a high-level survey of key recent developments in sparse modeling. The book then describes optimization problems involving commonly used sparsity-enforcing tools, presents essential theoretical results, and discusses several state-of-the-art algorithms for finding sparse solutions.



The authors go on to address a variety of sparse recovery problems that extend the basic formulation to more sophisticated forms of structured sparsity and to different loss functions. They also examine a particular class of sparse graphical models and cover dictionary learning and sparse matrix factorizations.

Irina Rish, Genady Grabarnik

Introduction. Sparse Recovery: Problem Formulations. Theoretical Results (Deterministic Part). Theoretical Results (Probabilistic Part). Algorithms for Sparse Recovery Problems. Beyond LASSO: Structured Sparsity. Beyond LASSO: Other Loss Functions. Sparse Graphical Models. Sparse Matrix Factorization: Dictionary Learning and Beyond. Epilogue. Appendix. Bibliography. Index.

Erscheinungsdatum
Reihe/Serie Chapman & Hall/CRC Machine Learning & Pattern Recognition
Verlagsort London
Sprache englisch
Maße 156 x 234 mm
Gewicht 470 g
Themenwelt Mathematik / Informatik Mathematik
Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
Technik Umwelttechnik / Biotechnologie
ISBN-10 0-367-65892-5 / 0367658925
ISBN-13 978-0-367-65892-2 / 9780367658922
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …

von Bernd Baumgarten

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Analysis und Lineare Algebra mit Querverbindungen

von Tilo Arens; Rolf Busam; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 97,95