Analog IC Placement Generation via Neural Networks from Unlabeled Data
Springer International Publishing (Verlag)
978-3-030-50060-3 (ISBN)
In the experimental results chapter, the trained ANNs are used to produce a variety of valid placement solutions even beyond the scope of the training/validation sets, demonstrating the model's effectiveness in terms of identifying common components between newer topologies and reutilizing the acquired knowledge. Lastly, the methodology used can readily adapt to the given problem's context (high label production cost), resulting in an efficient, inexpensive and fast model.
Introduction.- Related Work: Machine Learning and Electronic Design Automation.- Unlabeled Data and Artificial Neural Networks.- Placement Loss: Placement Constraints Description and Satisfiability Evaluation.- Experimental Results in Industrial Case Studies.- Conclusions.
| Erscheinungsdatum | 04.07.2020 |
|---|---|
| Reihe/Serie | SpringerBriefs in Applied Sciences and Technology |
| Zusatzinfo | XIII, 87 p. 68 illus., 39 illus. in color. |
| Verlagsort | Cham |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 174 g |
| Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
| Schlagworte | Analog IC Design Automation • Analog IC Placement • ANNS • Artificial Neural Networks • computer-aided-design tools • Electronic Design Automation • machine learning |
| ISBN-10 | 3-030-50060-8 / 3030500608 |
| ISBN-13 | 978-3-030-50060-3 / 9783030500603 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich