Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

On Self-Similar Sets with Overlaps and Inverse Theorems for Entropy in $/mathbb {R}^d$

(Autor)

Buch | Softcover
100 Seiten
2020
American Mathematical Society (Verlag)
978-1-4704-4177-7 (ISBN)
CHF 137,45 inkl. MwSt
  • Titel wird leider nicht erscheinen
  • Artikel merken
Examines self-similar sets and measures on $/mathbb{R}^{d}$. >The author gives a number of applications to algebraic systems, parametrized systems, and to some classical examples.
The author studies self-similar sets and measures on $/mathbb{R}^{d}$. Assuming that the defining iterated function system $/Phi$ does not preserve a proper affine subspace, he shows that one of the following holds: (1) the dimension is equal to the trivial bound (the minimum of $d$ and the similarity dimension $s$); (2) for all large $n$ there are $n$-fold compositions of maps from $/Phi$ which are super-exponentially close in $n$; (3) there is a non-trivial linear subspace of $/mathbb{R}^{d}$ that is preserved by the linearization of $/Phi$ and whose translates typically meet the set or measure in full dimension. In particular, when the linearization of $/Phi$ acts irreducibly on $/mathbb{R}^{d}$, either the dimension is equal to $/min/{s,d/}$ or there are super-exponentially close $n$-fold compositions.

The author gives a number of applications to algebraic systems, parametrized systems, and to some classical examples. The main ingredient in the proof is an inverse theorem for the entropy growth of convolutions of measures on $/mathbb{R}^{d}$, and the growth of entropy for the convolution of a measure on the orthogonal group with a measure on $/mathbb{R}^{d}$. More generally, this part of the paper applies to smooth actions of Lie groups on manifolds.

Michael Hochman, Einstein Institute of Mathematics, Jerusalem, Israel.

Erscheinungsdatum
Reihe/Serie Memoirs of the American Mathematical Society
Verlagsort Providence
Sprache englisch
Maße 178 x 254 mm
Gewicht 333 g
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-10 1-4704-4177-2 / 1470441772
ISBN-13 978-1-4704-4177-7 / 9781470441777
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 118,95