Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Practical Machine Learning in R (eBook)

eBook Download: EPUB
2020 | 1. Auflage
464 Seiten
John Wiley & Sons (Verlag)
978-1-119-59153-5 (ISBN)

Lese- und Medienproben

Practical Machine Learning in R - Fred Nwanganga, Mike Chapple
Systemvoraussetzungen
25,99 inkl. MwSt
(CHF 25,35)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Guides professionals and students through the rapidly growing field of machine learning with hands-on examples in the popular R programming language

Machine learning--a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions--allows organizations to reveal patterns in their data and incorporate predictive analytics into their decision-making process. Practical Machine Learning in R provides a hands-on approach to solving business problems with intelligent, self-learning computer algorithms.

Bestselling author and data analytics experts Fred Nwanganga and Mike Chapple explain what machine learning is, demonstrate its organizational benefits, and provide hands-on examples created in the R programming language. A perfect guide for professional self-taught learners or students in an introductory machine learning course, this reader-friendly book illustrates the numerous real-world business uses of machine learning approaches. Clear and detailed chapters cover data wrangling, R programming with the popular RStudio tool, classification and regression techniques, performance evaluation, and more.

* Explores data management techniques, including data collection, exploration and dimensionality reduction

* Covers unsupervised learning, where readers identify and summarize patterns using approaches such as apriori, eclat and clustering

* Describes the principles behind the Nearest Neighbor, Decision Tree and Naive Bayes classification techniques

* Explains how to evaluate and choose the right model, as well as how to improve model performance using ensemble methods such as Random Forest and XGBoost

Practical Machine Learning in R is a must-have guide for business analysts, data scientists, and other professionals interested in leveraging the power of AI to solve business problems, as well as students and independent learners seeking to enter the field.

FRED NWANGANGA, PHD, is an assistant teaching professor of business analytics at the University of Notre Dame's Mendoza College of Business. He has over 15 years of technology leadership experience. MIKE CHAPPLE, PHD, is associate teaching professor of information technology, analytics, and operations at the Mendoza College of Business. Mike is a bestselling author of over 25 books, and he currently serves as academic director of the University's Master of Science in Business Analytics program.

Erscheint lt. Verlag 10.4.2020
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Mathematik / Informatik Informatik Software Entwicklung
Schlagworte Computer Science • Informatik • Maschinelles Lernen • Programmierung • Programmierung u. Software-Entwicklung • Programming & Software Development • R (Programm)
ISBN-10 1-119-59153-8 / 1119591538
ISBN-13 978-1-119-59153-5 / 9781119591535
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95