Reconstructing Functions on the Sphere from Circular Means
Seiten
2020
Universitätsverlag Chemnitz
978-3-96100-116-3 (ISBN)
Universitätsverlag Chemnitz
978-3-96100-116-3 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
The present thesis considers the problem of reconstructing a function f that is defined on the d-dimensional unit sphere from its mean values along hyperplane sections. In case of the two-dimensional sphere, these plane sections are circles. In many tomographic applications, however, only limited data is available. Therefore, one is interested in the reconstruction of the function f from its mean values with respect to only some subfamily of all hyperplane sections of the sphere. Compared with the full data case, the limited data problem is more challenging and raises several questions. The first one is the injectivity, i.e., can any function be uniquely reconstructed from the available data? Further issues are the stability of the reconstruction, which is closely connected with a description of the range, as well as the demand for actual inversion methods or algorithms. We provide a detailed coverage and answers of these questions for different families of hyperplane sections of the sphere such as vertical slices, sections with hyperplanes through a common point and also incomplete great circles. Such reconstruction problems arise in various practical applications like Compton camera imaging, magnetic resonance imaging, photoacoustic tomography, Radar imaging or seismic imaging. Furthermore, we apply our findings about spherical means to the cone-beam transform and prove its singular value decomposition.
| Erscheinungsdatum | 10.08.2020 |
|---|---|
| Zusatzinfo | Illustrationen, Diagramme |
| Verlagsort | Chemnitz |
| Sprache | englisch |
| Maße | 148 x 210 mm |
| Gewicht | 255 g |
| Themenwelt | Mathematik / Informatik ► Mathematik |
| Schlagworte | Bilderzeugung • Bildgebung • Funk-Radon-Transformation • Inverse Probleme • Inverses Problem • Kugelflächenfunktionen • Radon-Transformation • Singulärwertzerlegung • Sphärische Mittelwerte • sphärische Tomografie |
| ISBN-10 | 3-96100-116-2 / 3961001162 |
| ISBN-13 | 978-3-96100-116-3 / 9783961001163 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Grundlagen für das Bachelor-Studium
Buch | Hardcover (2023)
Hanser (Verlag)
CHF 55,95
Analysis und Lineare Algebra mit Querverbindungen
Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 97,95