Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Hands-On Deep Learning with R - Michael Pawlus, Rodger Devine

Hands-On Deep Learning with R

A practical guide to designing, building, and improving neural network models using R
Buch | Softcover
330 Seiten
2020
Packt Publishing Limited (Verlag)
978-1-78899-683-9 (ISBN)
CHF 54,10 inkl. MwSt
Deep learning enables efficient and accurate learning from data. Developers working with R will be able to put their knowledge to work with this practical guide to deep learning. The book provides a hands-on approach to implementation and associated methodologies that will have you up-and-running, and productive in no time.
Explore and implement deep learning to solve various real-world problems using modern R libraries such as TensorFlow, MXNet, H2O, and Deepnet

Key Features

Understand deep learning algorithms and architectures using R and determine which algorithm is best suited for a specific problem
Improve models using parameter tuning, feature engineering, and ensembling
Apply advanced neural network models such as deep autoencoders and generative adversarial networks (GANs) across different domains

Book DescriptionDeep learning enables efficient and accurate learning from a massive amount of data. This book will help you overcome a number of challenges using various deep learning algorithms and architectures with R programming.

This book starts with a brief overview of machine learning and deep learning and how to build your first neural network. You’ll understand the architecture of various deep learning algorithms and their applicable fields, learn how to build deep learning models, optimize hyperparameters, and evaluate model performance. Various deep learning applications in image processing, natural language processing (NLP), recommendation systems, and predictive analytics will also be covered. Later chapters will show you how to tackle recognition problems such as image recognition and signal detection, programmatically summarize documents, conduct topic modeling, and forecast stock market prices. Toward the end of the book, you will learn the common applications of GANs and how to build a face generation model using them. Finally, you’ll get to grips with using reinforcement learning and deep reinforcement learning to solve various real-world problems.

By the end of this deep learning book, you will be able to build and deploy your own deep learning applications using appropriate frameworks and algorithms.

What you will learn

Design a feedforward neural network to see how the activation function computes an output
Create an image recognition model using convolutional neural networks (CNNs)
Prepare data, decide hidden layers and neurons and train your model with the backpropagation algorithm
Apply text cleaning techniques to remove uninformative text using NLP
Build, train, and evaluate a GAN model for face generation
Understand the concept and implementation of reinforcement learning in R

Who this book is forThis book is for data scientists, machine learning engineers, and deep learning developers who are familiar with machine learning and are looking to enhance their knowledge of deep learning using practical examples. Anyone interested in increasing the efficiency of their machine learning applications and exploring various options in R will also find this book useful. Basic knowledge of machine learning techniques and working knowledge of the R programming language is expected.

Michael Pawlus is a data scientist at The Ohio State University where he is currently part of the team building of the data science infrastructure for the Advancement department while also leading the implementation of innovative projects there. Prior to this, Michael was a data scientist at the University of Southern California. In addition to this work, Michael has chaired data science education conferences, published articles on the role of data science within fundraising and currently serves on committees where he is focused on providing a wider variety of educational offerings as well as increasing the diversity of content creators in this space. Michael holds degrees from Grand Valley State University and the University of Sheffield. Rodger Devine is the Associate Dean of External Affairs for Strategy and Innovation at the USC Dornsife College of Letters, Arts, and Sciences. Rodger’s portfolio includes advancement operations, BI, leadership annual giving, program innovation, prospect development, and strategic information management. Prior to USC, Rodger served as the Director of Information, Analytics, and Annual Giving at the Michigan Ross School of Business. Rodger brings nearly 20 years of experience in software engineering, IT operations, BI, project management, organizational development, and leadership. Rodger completed his Masters in data science at the University of Michigan and is a doctoral student in the OCL program at the USC Rossier School of Education.

Table of Contents

Machine Learning Basics
Setting Up R for Deep Learning
Artificial Neural Networks
Convolutional Neural Networks for Image Recognition
Multilayer Perceptron Neural Networks for Signal Detection
Neural Collaborative Filtering Using Embeddings
Deep Learning for Natural Language Processing
Long Short-Term Memory Networks for Stock Forecast
Generative Adversarial Networks for Face Generation
Reinforcement Learning for gaming
Deep Q Learning for Maze Solving

Erscheinungsdatum
Verlagsort Birmingham
Sprache englisch
Maße 75 x 93 mm
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-78899-683-6 / 1788996836
ISBN-13 978-1-78899-683-9 / 9781788996839
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

Buch | Hardcover (2024)
C.H.Beck (Verlag)
CHF 44,75
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …

von Mustafa Suleyman; Michael Bhaskar

Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20