Asymptotic Analysis and Design Optimization for Periodic Perforated Shells
Seiten
2020
Fraunhofer Verlag
978-3-8396-1569-0 (ISBN)
Fraunhofer Verlag
978-3-8396-1569-0 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
Homogenization of Shells and their design optimization arise in various different industrial applications. In this work, we successfully present the asymptotic analysis and obtain an equivalent homogeneous formulation. We obtain the effective properties by solving the cell problems. For the optimization, we compute the analytic solution. Since it depends on the effective properties, it qualifies as an objective functional.
The core of this thesis lies in the task of structural optimization of periodic perforated cylindrical shells under a given point load. The problem is divided into three subcategories: Asymptotic analysis, macroscopic model and optimization. In this work we show a qualitative derivation, together with an algorithm for calculating the effective properties. We start with a decomposition of the applied displacements. Using the Unfolding-Rescaling operator we can decouple the two small parameters. The homogenization on beam-like structures is executed numerically and symbolically. The effective properties depend solely on the periodicity cell. We calculate the analytical solution of the limit equation. The solution is determined via a Fourier transformation and series. Moreover, this function depends on the effective properties. It is possible to represent the displacements w.r.t. certain design variables. This allows performing optimization with simple methods. We use a steepest descent method to minimize the resulting displacement. This yields the optimal configuration w.r.t. our admissible design space. Applied industrial problems can thus be effectively solved.
The core of this thesis lies in the task of structural optimization of periodic perforated cylindrical shells under a given point load. The problem is divided into three subcategories: Asymptotic analysis, macroscopic model and optimization. In this work we show a qualitative derivation, together with an algorithm for calculating the effective properties. We start with a decomposition of the applied displacements. Using the Unfolding-Rescaling operator we can decouple the two small parameters. The homogenization on beam-like structures is executed numerically and symbolically. The effective properties depend solely on the periodicity cell. We calculate the analytical solution of the limit equation. The solution is determined via a Fourier transformation and series. Moreover, this function depends on the effective properties. It is possible to represent the displacements w.r.t. certain design variables. This allows performing optimization with simple methods. We use a steepest descent method to minimize the resulting displacement. This yields the optimal configuration w.r.t. our admissible design space. Applied industrial problems can thus be effectively solved.
| Erscheinungsdatum | 14.03.2020 |
|---|---|
| Zusatzinfo | num., mostly col. illus. and tab. |
| Verlagsort | Stuttgart |
| Sprache | englisch |
| Maße | 148 x 210 mm |
| Themenwelt | Mathematik / Informatik ► Informatik |
| Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
| Schlagworte | asymptotic analysis • B • Calculus & mathematical analysis • Chemieingenieur • Chemieingenieure • Entwicklungsingenieur • Entwicklungsingenieure • Fraunhofer ITWM • homogenization • linear elasticity • Mathematiker • Maths for engineers • mechanical engineering • Optimization • shell theory • Verfahrensingenieur • Verfahrensingenieure • Verfahrenstechniker |
| ISBN-10 | 3-8396-1569-0 / 3839615690 |
| ISBN-13 | 978-3-8396-1569-0 / 9783839615690 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
für Ingenieure und Naturwissenschaftler
Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 48,95
Buch | Softcover (2025)
Springer Vieweg (Verlag)
CHF 62,95
Buch | Softcover (2025)
Springer Fachmedien Wiesbaden (Verlag)
CHF 69,95