Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on $/mathbb {R}$ - Peter Polacik

Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on $/mathbb {R}$

(Autor)

Buch | Softcover
87 Seiten
2020
American Mathematical Society (Verlag)
9781470441128 (ISBN)
CHF 139,30 inkl. MwSt
  • Titel z.Zt. nicht lieferbar
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
The author considers semilinear parabolic equations of the form $u_t=u_xx f(u),/quad x/in /mathbb R,t>0,$ where $f$ a $C^1$ function. Assuming that $0$ and $/gamma >0$ are constant steady states, the author investigates the large-time behavior of the front-like solutions.
The author considers semilinear parabolic equations of the form $u_t=u_xx f(u),/quad x/in /mathbb R,t>0,$ where $f$ a $C^1$ function. Assuming that $0$ and $/gamma >0$ are constant steady states, the author investigates the large-time behavior of the front-like solutions, that is, solutions $u$ whose initial values $u(x,0)$ are near $/gamma $ for $x/approx -/infty $ and near $0$ for $x/approx /infty $. If the steady states $0$ and $/gamma $ are both stable, the main theorem shows that at large times, the graph of $u(/cdot ,t)$ is arbitrarily close to a propagating terrace (a system of stacked traveling fonts). The author proves this result without requiring monotonicity of $u(/cdot ,0)$ or the nondegeneracy of zeros of $f$.

The case when one or both of the steady states $0$, $/gamma $ is unstable is considered as well. As a corollary to the author's theorems, he shows that all front-like solutions are quasiconvergent: their $/omega $-limit sets with respect to the locally uniform convergence consist of steady states. In the author's proofs he employs phase plane analysis, intersection comparison (or, zero number) arguments, and a geometric method involving the spatial trajectories $/{(u(x,t),u_x(x,t)):x/in /mathbb R/}$, $t>0$, of the solutions in question.

Peter Polacik, University of Minnesota, Minneapolis, MN.

Introduction
Main results
Phase plane analysis
Proofs of Propositions 2.8, 2.12
Preliminaries on the limit sets and zero number
Proofs of the main theorems
Bibliography.

Erscheinungsdatum
Reihe/Serie Memoirs of the American Mathematical Society
Verlagsort Providence
Sprache englisch
Maße 178 x 254 mm
Gewicht 180 g
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-13 9781470441128 / 9781470441128
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 118,95