Global Well-Posedness of High Dimensional Maxwell-Dirac for Small Critical Data
Seiten
2020
American Mathematical Society (Verlag)
978-1-4704-4111-1 (ISBN)
American Mathematical Society (Verlag)
978-1-4704-4111-1 (ISBN)
In this paper, the authors prove global well-posedness of the massless Maxwell-Dirac equation in the Coulomb gauge on $/mathbb{R}^{1+d} (d/geq 4)$ for data with small scale-critical Sobolev norm, as well as modified scattering of the solutions. Main components of the authors' proof are A) uncovering null structure of Maxwell-Dirac in the Coulomb gauge, and B) proving solvability of the underlying covariant Dirac equation. A key step for achieving both is to exploit (and justify) a deep analogy between Maxwell-Dirac and Maxwell-Klein-Gordon (for which an analogous result was proved earlier by Krieger-Sterbenz-Tataru, which says that the most difficult part of Maxwell-Dirac takes essentially the same form as Maxwell-Klein-Gordon.
Cristian Gavrus, University of California, Berkeley, CA. Sung-Jin Oh, Korea Institute for Advanced Study, Seoul, Republic of Korea.
| Erscheinungsdatum | 01.04.2020 |
|---|---|
| Reihe/Serie | Memoirs of the American Mathematical Society |
| Verlagsort | Providence |
| Sprache | englisch |
| Maße | 178 x 254 mm |
| Gewicht | 215 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| ISBN-10 | 1-4704-4111-X / 147044111X |
| ISBN-13 | 978-1-4704-4111-1 / 9781470441111 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90