Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Sampling and Estimation from Finite Populations (eBook)

(Autor)

eBook Download: EPUB
2020
John Wiley & Sons (Verlag)
978-1-119-07127-3 (ISBN)

Lese- und Medienproben

Sampling and Estimation from Finite Populations - Yves Tille
Systemvoraussetzungen
73,99 inkl. MwSt
(CHF 72,25)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

A much-needed reference on survey sampling and its applications that presents the latest advances in the field

Seeking to show that sampling theory is a living discipline with a very broad scope, this book examines the modern development of the theory of survey sampling and the foundations of survey sampling. It offers readers a critical approach to the subject and discusses putting theory into practice. It also explores the treatment of non-sampling errors featuring a range of topics from the problems of coverage to the treatment of non-response. In addition, the book includes real examples, applications, and a large set of exercises with solutions.

Sampling and Estimation from Finite Populations begins with a look at the history of survey sampling. It then offers chapters on: population, sample, and estimation; simple and systematic designs; stratification; sampling with unequal probabilities; balanced sampling; cluster and two-stage sampling; and other topics on sampling, such as spatial sampling, coordination in repeated surveys, and multiple survey frames. The book also includes sections on: post-stratification and calibration on marginal totals; calibration estimation; estimation of complex parameters; variance estimation by linearization; and much more.

  • Provides an up-to-date review of the theory of sampling
  • Discusses the foundation of inference in survey sampling, in particular, the model-based and design-based frameworks
  • Reviews the problems of application of the theory into practice
  • Also deals with the treatment of non sampling errors

Sampling and Estimation from Finite Populations is an excellent book for methodologists and researchers in survey agencies and advanced undergraduate and graduate students in social science, statistics, and survey courses.



YVES TILLÉ, PhD, is a Professor at the University of Neuchâtel (Université de Neuchâtel) in Neuchâtel, Switzerland.


A much-needed reference on survey sampling and its applications that presents the latest advances in the field Seeking to show that sampling theory is a living discipline with a very broad scope, this book examines the modern development of the theory of survey sampling and the foundations of survey sampling. It offers readers a critical approach to the subject and discusses putting theory into practice. It also explores the treatment of non-sampling errors featuring a range of topics from the problems of coverage to the treatment of non-response. In addition, the book includes real examples, applications, and a large set of exercises with solutions. Sampling and Estimation from Finite Populations begins with a look at the history of survey sampling. It then offers chapters on: population, sample, and estimation; simple and systematic designs; stratification; sampling with unequal probabilities; balanced sampling; cluster and two-stage sampling; and other topics on sampling, such as spatial sampling, coordination in repeated surveys, and multiple survey frames. The book also includes sections on: post-stratification and calibration on marginal totals; calibration estimation; estimation of complex parameters; variance estimation by linearization; and much more. Provides an up-to-date review of the theory of sampling Discusses the foundation of inference in survey sampling, in particular, the model-based and design-based frameworks Reviews the problems of application of the theory into practice Also deals with the treatment of non sampling errors Sampling and Estimation from Finite Populations is an excellent book for methodologists and researchers in survey agencies and advanced undergraduate and graduate students in social science, statistics, and survey courses.

YVES TILLÉ, PhD, is a Professor at the University of Neuchâtel (Université de Neuchâtel) in Neuchâtel, Switzerland.

"A task for the current, and future, generation is the research and development of methods for integrating data from multiple sources by explicitly addressing the different measurement errors. Those who read this book and address its challenges will be well placed to deal with the research opportunities ahead--both foreseen and yet to be identified."
--Carl M. O'Brien, Lowestoft Laboratory, International Statistical Review (2020) doi:10.1111/insr.12420

Table of Notations


cardinal (number of elements in a set)
much less than
complement of in
function is the derivative of
factorial:
number of ways to choose units from units
interval
is approximately equal to
is proportional to
follows a specific probability distribution (for a random value)
equals 1 if is true and 0 otherwise
number of times unit  is in the sample
vector of
population regression coefficients
vector of population regression coefficients
regression coefficients for model
vector of regression coefficients of model
vector of estimated regression coefficients
vector of estimated regression coefficients of the model
cube whose vertices are samples
covariance between random variables and 
estimated covariance between random variables and 
population coefficient of variation
estimated coefficient of variation
expansion estimator survey weights
mathematical expectation under the sampling design of estimator 
mathematical expectation under the model of estimator 
mathematical expectation under the nonresponse mechanism of estimator 
mathematical expectation under the imputation mechanism of estimator 
mean square error
sampling fraction
pseudo‐distance derivative for calibration
adjustment factor after calibration called ‐weight
pseudo‐distance for calibration
strata or post‐strata index
confidence interval with confidence level
ou indicates a statistical unit, or
intersection of the cube and constraint space for the cube method
number of clusters or primary units in the sample of clusters or primary units
number of clusters or primary units in the population
Sample size (without replacement)
number of secondary units sampled in primary unit
size of the sample in if the size is random
population size
Sample size in stratum or post‐stratum
number of units in stratum or post‐stratum
number of secondary units in primary unit
population totals when is a contingency table
set of natural numbers
set of positive natural numbers with zero
probability of selecting sample
probability of sampling unit  for sampling with replacement
or proportion of units belonging to domain
probability that event occurs
probability that event occurs, given occurred
subspace of constraints for the cube method
response indicator
set of real numbers
set of positive real numbers with zero
set of strictly positive real numbers
Sample or subset of the population,
Sample variance of variable 
Sample variance of in stratum or post‐stratum
covariance between variables and in the sample
random sample such that
variance of variance in the population
covariance between variables and in the population
random sample selected in stratum or post‐stratum
population variance of in the stratum or post‐stratum
vector is the transpose of vector
finite population of size
stratum or post‐stratum , where
linearized variable
Horvitz–Thompson estimator of the variance of estimator 
Sen–Yates–Grundy estimator of the variance of estimator 
variance of estimator  under the survey design
variance of estimator  under the model
variance of estimator  under the nonresponse mechanism
variance of estimator  under the imputation mechanism
variance estimator of estimator 
or weight associated with individual in the sample after calibration
auxiliary variable
auxiliary variable value of unit 
vector in of the values taken by the auxiliary variables on 
total value of the auxiliary variable over all the units of
expansion estimator of
mean value of the auxiliary variables over all the units of
expansion estimator of
variable of interest
value of the variable of interest for unit 
imputed value of for  (treating nonresponse)
total value of the variable of interest over all the units of
total value of the variable of interest over all the units in stratum or post‐stratum
total of in primary unit or cluster
expansion estimator of 
mean value of the variable of interest over all the units of
mean value of the variable of interest over all units of stratum or post‐stratum
estimator of the mean value of the variable of interest over all units of stratum or post‐stratum
expansion estimator of
best unbiased linear estimator under the model of total
calibrated estimator of total
difference estimator of total
estimator of total  in stratum or post‐stratum
Hájek estimator of
Hansen–Hurwitz estimator of
estimator used when missing values are imputed
expansion estimator of the total in an optimal stratified design
post‐stratified estimator of the total
expansion estimator of the total in a stratified design with proportional allocation
regression estimator of total
multiple regression estimator of total
optimal regression estimator of total
Rao–Blackwellized estimator of
ratio estimator of the total
expansion estimator of the total in a stratified design
...

Erscheint lt. Verlag 26.2.2020
Reihe/Serie Wiley Series in Survey Methodology
Wiley Series in Survey Methodology
Wiley Series in Survey Methodology
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Adaptive sampling • Data • Data Analysis • estimation • Finite Population • finite population</p> • <p>sampling • Methoden der Daten- u. Stichprobenerhebung • population sampling • sampling statistics • Social Science • Statistics • Statistik • Survey • survey methodology • Survey Research Methods & Sampling • Surveys • Survey Sampling • Time Series
ISBN-10 1-119-07127-5 / 1119071275
ISBN-13 978-1-119-07127-3 / 9781119071273
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich