Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Deep Traffic Reinforcement Learning. Steuern eines Fahrzeugs durch eine simulierte Straßenumgebung mit dichtem Verkehr (eBook)

eBook Download: PDF
2020 | 1. Auflage
41 Seiten
GRIN Verlag
978-3-346-10800-5 (ISBN)

Lese- und Medienproben

Deep Traffic Reinforcement Learning. Steuern eines Fahrzeugs durch eine simulierte Straßenumgebung mit dichtem Verkehr - Andreas Schurr, Reinhold Ackermann
Systemvoraussetzungen
15,99 inkl. MwSt
(CHF 15,60)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Studienarbeit aus dem Jahr 2019 im Fachbereich Informatik - Wirtschaftsinformatik, Note: 1,7, FOM Essen, Hochschule für Oekonomie & Management gemeinnützige GmbH, Hochschulleitung Essen früher Fachhochschule, Veranstaltung: Big Data & Data Science, Sprache: Deutsch, Abstract: In den folgenden Abschnitten dieser Arbeit sollen die Themen rund um Reinforcement Learning und ein Praxisbeispiel mit Hilfe von Reinforcement Learning dargestellt werden. Das Praxisbeispiel bezieht sich auf ein simuliertes Verkehrssystem, welches mit Hilfe von Reinforcement Learning selbstständig lernt, ob und wann ein Fahrzeug eigenständig überholen soll.

„Wir stehen am Vorabend einer weiteren mobilen Revolution. In Zukunft werden autonome Fahrzeuge aktiv am Straßenverkehr teilnehmen.“ (Maurer et al., 2015)

Durch die ansteigende Anzahl der Teilnehmer am Straßenverkehr wird es immer voller und enger auf den Straßen Deutschlands. Typischer Wochenbeginn – alle auf dem Weg zur Arbeit - PKWs, LKWs, Busse und an sonnigen Tagen, die Motorradfahrer. An Teilnehmern am Straßenverkehr fehlt es keines Wegs. Bei dichtem Verkehr steigt dadurch des Risikos eines Unfalls oder eines Staus. Mit autonom fahrenden Fahrzeugen wird sich in naher Zukunft einiges ändern – voraussichtlich auch zum Vorteil aller Autofahrer, wie beispielsweise das Erledigen von Aufgaben oder das Vorbereiten auf ein Kundengespräch während der Fahrt. Dem Autofahrer werden Schritt für Schritt mehr und mehr Aufgaben beim Autofahren abgenommen. Aber auch negative Folgeerscheinungen können entstehen. Beispielsweise die Abhängigkeit der Technik und das Vertrauen in das System. Um das autonome Fahren ermöglichen zu können, benötigten die Fahrzeuge viele notwendige Daten. Diese werden beispielsweise von Sensoren, Kameras oder auch Positionierungssystemen geliefert und in Echtzeit mittels Prozessoren und Kommunikationsschnittstellen anderer Fahrzeuge verarbeiten. Unter anderem ist auch die Verkehrsinfrastruktur ein bedeutender Teil des Ganzen Vorhabens. So müssen die Verkehrsinfrastruktur sowie die Kommunikationsinfrastruktur zusammen harmonieren und mit einander kollaborieren. Hierfür könnte Reinforcement Learning eine entscheidende Rolle beim autonomen Fahren übernehmen.
Erscheint lt. Verlag 5.2.2020
Verlagsort München
Sprache deutsch
Themenwelt Mathematik / Informatik Informatik
Schlagworte Autonomes Fahren • BigData • Deep learning • Reinforcement Learning
ISBN-10 3-346-10800-7 / 3346108007
ISBN-13 978-3-346-10800-5 / 9783346108005
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Herbert Voß

eBook Download (2025)
Lehmanns Media (Verlag)
CHF 19,50
Management der Informationssicherheit und Vorbereitung auf die …

von Michael Brenner; Nils gentschen Felde; Wolfgang Hommel …

eBook Download (2024)
Carl Hanser Fachbuchverlag
CHF 68,35