Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Advanced Analytics and Learning on Temporal Data -

Advanced Analytics and Learning on Temporal Data

4th ECML PKDD Workshop, AALTD 2019, Würzburg, Germany, September 20, 2019, Revised Selected Papers
Buch | Softcover
X, 229 Seiten
2020
Springer International Publishing (Verlag)
9783030390976 (ISBN)
CHF 74,85 inkl. MwSt

This book constitutes the refereed proceedings of the 4th ECML PKDD Workshop on Advanced Analytics and Learning on Temporal Data, AALTD 2019, held in Würzburg, Germany, in September 2019.
The 7 full papers presented together with 9 poster papers were carefully reviewed and selected from 31 submissions. The papers cover topics such as temporal data clustering; classification of univariate and multivariate time series; early classification of temporal data; deep learning and learning representations for temporal data; modeling temporal dependencies; advanced forecasting and prediction models; space-temporal statistical analysis; functional data analysis methods; temporal data streams; interpretable time-series analysis methods; dimensionality reduction, sparsity, algorithmic complexity and big data challenge; and bio-informatics, medical, energy consumption, on temporal data.

 

Robust Functional Regression for Outlier Detection.- Transform Learning Based Function Approximation for Regression and Forecasting.- Proactive Fiber Break Detection based on Quaternion Time Series and Automatic Variable Selection from Relational Data.- A fully automated periodicity detection in time series.- Conditional Forecasting of Water Level Time Series with RNNs.- Challenges and Limitations in Clustering Blood Donor Hemoglobin Trajectories.- Localized Random Shapelets.- Feature-Based Gait Pattern Classification for a Robotic Walking Frame.- How to detect novelty in textual data streams? A comparative study of existing methods.- Seq2VAR: multivariate time series representation with relational neural networks and linear autoregressive model.- Modelling Patient Sequences for Rare Disease Detection with Semi-supervised Generative Adversarial Nets.- Extended Kalman Filter for Large Scale Vessels Trajectory Tracking in Distributed Stream Processing Systems.- Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Datasets using Deep Learning.- Learning Stochastic Dynamical Systems via Bridge Sampling.- Quantifying Quality of Actions Using Wearable Sensor.- An Initial Study on Adapting DTW at Individual Query for Electrocardiogram Analysis.

Erscheinungsdatum
Reihe/Serie Lecture Notes in Artificial Intelligence
Lecture Notes in Computer Science
Zusatzinfo X, 229 p. 109 illus., 90 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 373 g
Themenwelt Mathematik / Informatik Informatik Netzwerke
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte batch learning • Boosting • classification • classification and regression trees • Computer Hardware • Computer Networks • Databases • Data communication systems • Data Mining • Forecasting • Image Processing • Instance-Based Learning • Internet • machine learning • Network Protocols • sensors • Signal Processing • spatial-temporal systems • Supervised learning by classification • Time Series Analysis
ISBN-13 9783030390976 / 9783030390976
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …

von Mustafa Suleyman; Michael Bhaskar

Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20