An Introduction to Variational Autoencoders
Seiten
2019
now publishers Inc (Verlag)
9781680836226 (ISBN)
now publishers Inc (Verlag)
9781680836226 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
Presents an introduction to the framework of variational autoencoders (VAEs) that provides a principled method for jointly learning deep latent-variable models and corresponding inference models using stochastic gradient descent.
In this monograph, the authors present an introduction to the framework of variational autoencoders (VAEs) that provides a principled method for jointly learning deep latent-variable models and corresponding inference models using stochastic gradient descent. The framework has a wide array of applications from generative modeling, semi-supervised learning to representation learning.The authors expand earlier work and provide the reader with the fine detail on the important topics giving deep insight into the subject for the expert and student alike. Written in a survey-like nature the text serves as a review for those wishing to quickly deepen their knowledge of the topic.
An Introduction to Variational Autoencoders provides a quick summary for the of a topic that has become an important tool in modern-day deep learning techniques.
In this monograph, the authors present an introduction to the framework of variational autoencoders (VAEs) that provides a principled method for jointly learning deep latent-variable models and corresponding inference models using stochastic gradient descent. The framework has a wide array of applications from generative modeling, semi-supervised learning to representation learning.The authors expand earlier work and provide the reader with the fine detail on the important topics giving deep insight into the subject for the expert and student alike. Written in a survey-like nature the text serves as a review for those wishing to quickly deepen their knowledge of the topic.
An Introduction to Variational Autoencoders provides a quick summary for the of a topic that has become an important tool in modern-day deep learning techniques.
1. Introduction
2. Variational Autoencoders
3. Beyond Gaussian Posteriors
4. Deeper Generative Models
5. Conclusion
Acknowledgements
Appendices
References
| Erscheinungsdatum | 02.12.2019 |
|---|---|
| Reihe/Serie | Foundations and Trends® in Machine Learning |
| Verlagsort | Hanover |
| Sprache | englisch |
| Maße | 156 x 234 mm |
| Gewicht | 156 g |
| Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
| ISBN-13 | 9781680836226 / 9781680836226 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Eine praxisorientierte Einführung
Buch | Softcover (2025)
Springer Vieweg (Verlag)
CHF 53,15
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …
Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20
Buch | Softcover (2025)
Reclam, Philipp (Verlag)
CHF 11,20