Witten Non Abelian Localization for Equivariant K-theory, and the $[Q,R]=0$ Theorem
Seiten
2019
American Mathematical Society (Verlag)
9781470435226 (ISBN)
American Mathematical Society (Verlag)
9781470435226 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
Presents a non-abelian localization theorem when M is any even dimensional compact manifold: following an idea of E. Witten, the authors deform an elliptic symbol associated to a Clifford bundle on M with a vector field associated to a moment map.
The purpose of the present memoir is two-fold. First, the authors obtain a non-abelian localization theorem when M is any even dimensional compact manifold : following an idea of E. Witten, the authors deform an elliptic symbol associated to a Clifford bundle on M with a vector field associated to a moment map. Second, the authors use this general approach to reprove the $[Q,R] = 0$ theorem of Meinrenken-Sjamaar in the Hamiltonian case and obtain mild generalizations to almost complex manifolds. This non-abelian localization theorem can be used to obtain a geometric description of the multiplicities of the index of general $spin^c$ Dirac operators.
The purpose of the present memoir is two-fold. First, the authors obtain a non-abelian localization theorem when M is any even dimensional compact manifold : following an idea of E. Witten, the authors deform an elliptic symbol associated to a Clifford bundle on M with a vector field associated to a moment map. Second, the authors use this general approach to reprove the $[Q,R] = 0$ theorem of Meinrenken-Sjamaar in the Hamiltonian case and obtain mild generalizations to almost complex manifolds. This non-abelian localization theorem can be used to obtain a geometric description of the multiplicities of the index of general $spin^c$ Dirac operators.
Paul-Emile Paradan, Universite de Montpellier, France. Michele Vergne, Universite de Paris 7, France.
Introduction
Index theory
$/mathbf{K}$-theoretic localization
``Quantization commutes with reduction'' theorems
Branching laws
Bibliography.
| Erscheinungsdatum | 31.10.2019 |
|---|---|
| Reihe/Serie | Memoirs of the American Mathematical Society |
| Verlagsort | Providence |
| Sprache | englisch |
| Maße | 178 x 254 mm |
| Gewicht | 180 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Naturwissenschaften ► Physik / Astronomie | |
| ISBN-13 | 9781470435226 / 9781470435226 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90