Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Hands-On Deep Learning with Go - Gareth Seneque, Darrell Chua

Hands-On Deep Learning with Go

A practical guide to building and implementing neural network models using Go
Buch | Softcover
242 Seiten
2019
Packt Publishing Limited (Verlag)
978-1-78934-099-0 (ISBN)
CHF 62,80 inkl. MwSt
The Go ecosystem comprises some really powerful Deep Learning tools. This book shows you how to use these tools to train and deploy scalable Deep Learning models. You will explore a number of modern Neural Network architectures such as CNNs, RNNs, and more. By the end, you will be able to train your own Deep Learning models from scratch, using ...
Apply modern deep learning techniques to build and train deep neural networks using Gorgonia

Key Features

Gain a practical understanding of deep learning using Golang
Build complex neural network models using Go libraries and Gorgonia
Take your deep learning model from design to deployment with this handy guide

Book DescriptionGo is an open source programming language designed by Google for handling large-scale projects efficiently. The Go ecosystem comprises some really powerful deep learning tools such as DQN and CUDA. With this book, you'll be able to use these tools to train and deploy scalable deep learning models from scratch.

This deep learning book begins by introducing you to a variety of tools and libraries available in Go. It then takes you through building neural networks, including activation functions and the learning algorithms that make neural networks tick. In addition to this, you'll learn how to build advanced architectures such as autoencoders, restricted Boltzmann machines (RBMs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and more. You'll also understand how you can scale model deployments on the AWS cloud infrastructure for training and inference.

By the end of this book, you'll have mastered the art of building, training, and deploying deep learning models in Go to solve real-world problems.

What you will learn

Explore the Go ecosystem of libraries and communities for deep learning
Get to grips with Neural Networks, their history, and how they work
Design and implement Deep Neural Networks in Go
Get a strong foundation of concepts such as Backpropagation and Momentum
Build Variational Autoencoders and Restricted Boltzmann Machines using Go
Build models with CUDA and benchmark CPU and GPU models

Who this book is forThis book is for data scientists, machine learning engineers, and AI developers who want to build state-of-the-art deep learning models using Go. Familiarity with basic machine learning concepts and Go programming is required to get the best out of this book.

Gareth Seneque is a machine learning engineer with 11 years' experience of building and deploying systems at scale in the finance and media industries. He became interested in deep learning in 2014 and is currently building a search platform within his organization, using neuro-linguistic programming and other machine learning techniques to generate content metadata and drive recommendations. He has contributed to a number of open source projects, including CoREBench and Gorgonia. He also has extensive experience with modern DevOps practices, using AWS, Docker, and Kubernetes to effectively distribute the processing of machine learning workloads. Darrell Chua is a senior data scientist with more than 10 years' experience. He has developed models of varying complexity, from building credit scorecards with logistic regression to creating image classification models for trading cards. He has spent the majority of his time working with in fintech companies, trying to bring machine learning technologies into the world of finance. He has been programming in Go for several years and has been working on deep learning models for even longer. Among his achievements is the creation of numerous business intelligence and data science pipelines that enable the delivery of a top-of-the-line automated underwriting system, producing near-instant approval decisions.

Table of Contents

Introduction to Deep Learning in Go
What Is a Neural Network and How Do I Train One?
Beyond Basic Neural Networks - Autoencoders and RBMs
CUDA - GPU-Accelerated Training
Next Word Prediction with Recurrent Neural Networks
Object Recognition with Convolutional Neural Networks
Maze Solving with Deep Q-Networks
Generative Models with Variational Autoencoders
Building a Deep Learning Pipeline
Scaling Deployment

Erscheinungsdatum
Verlagsort Birmingham
Sprache englisch
Maße 75 x 93 mm
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-78934-099-3 / 1789340993
ISBN-13 978-1-78934-099-0 / 9781789340990
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,95