Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Hands-On Ensemble Learning with Python - George Kyriakides, Konstantinos G. Margaritis

Hands-On Ensemble Learning with Python

Build highly optimized ensemble machine learning models using scikit-learn and Keras
Buch | Softcover
298 Seiten
2019
Packt Publishing Limited (Verlag)
978-1-78961-285-1 (ISBN)
CHF 52,35 inkl. MwSt
Ensemble learning can provide the necessary methods to improve the accuracy and performance of existing models. In this book, you'll understand how to combine different machine learning algorithms to produce more accurate results from your models.
Combine popular machine learning techniques to create ensemble models using Python

Key Features

Implement ensemble models using algorithms such as random forests and AdaBoost
Apply boosting, bagging, and stacking ensemble methods to improve the prediction accuracy of your model
Explore real-world data sets and practical examples coded in scikit-learn and Keras

Book DescriptionEnsembling is a technique of combining two or more similar or dissimilar machine learning algorithms to create a model that delivers superior predictive power. This book will demonstrate how you can use a variety of weak algorithms to make a strong predictive model.

With its hands-on approach, you'll not only get up to speed on the basic theory but also the application of various ensemble learning techniques. Using examples and real-world datasets, you'll be able to produce better machine learning models to solve supervised learning problems such as classification and regression. Furthermore, you'll go on to leverage ensemble learning techniques such as clustering to produce unsupervised machine learning models. As you progress, the chapters will cover different machine learning algorithms that are widely used in the practical world to make predictions and classifications. You'll even get to grips with the use of Python libraries such as scikit-learn and Keras for implementing different ensemble models.

By the end of this book, you will be well-versed in ensemble learning, and have the skills you need to understand which ensemble method is required for which problem, and successfully implement them in real-world scenarios.

What you will learn

Implement ensemble methods to generate models with high accuracy
Overcome challenges such as bias and variance
Explore machine learning algorithms to evaluate model performance
Understand how to construct, evaluate, and apply ensemble models
Analyze tweets in real time using Twitter's streaming API
Use Keras to build an ensemble of neural networks for the MovieLens dataset

Who this book is forThis book is for data analysts, data scientists, machine learning engineers and other professionals who are looking to generate advanced models using ensemble techniques. An understanding of Python code and basic knowledge of statistics is required to make the most out of this book.

George Kyriakides is a Ph.D. researcher, studying distributed neural architecture search. His interests and experience include automated generation and optimization of predictive models for a wide array of applications, such as image recognition, time series analysis, and financial applications. He holds an M.Sc. in computational methods and applications, and a B.Sc. in applied informatics, both from the University of Macedonia, Thessaloniki, Greece. Konstantinos G. Margaritis has been a teacher and researcher in computer science for more than 30 years. His research interests include parallel and distributed computing as well as computational intelligence and machine learning. He holds an M.Eng. in electrical engineering (Aristotle University of Thessaloniki, Greece), as well as an M.Sc. and a Ph.D. in computer science (Loughborough University, UK). He is a professor at the Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece.

Table of Contents

A Machine Learning Refresher
Getting Started with Ensemble Learning
Voting
Stacking
Bagging
Boosting
Random Forests
Clustering
Classifying Fraudulent Transactions
Predicting Bitcoin Prices
Evaluating Twitters Sentiment
Recommending Movies with Keras
Clustering Application: World Happiness

Erscheinungsdatum
Verlagsort Birmingham
Sprache englisch
Maße 75 x 93 mm
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-78961-285-3 / 1789612853
ISBN-13 978-1-78961-285-1 / 9781789612851
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

Buch | Hardcover (2024)
C.H.Beck (Verlag)
CHF 44,75
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …

von Mustafa Suleyman; Michael Bhaskar

Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20