Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Enhanced Bayesian Network Models for Spatial Time Series Prediction - Monidipa Das, Soumya K. Ghosh

Enhanced Bayesian Network Models for Spatial Time Series Prediction

Recent Research Trend in Data-Driven Predictive Analytics
Buch | Hardcover
XXIII, 149 Seiten
2019
Springer International Publishing (Verlag)
9783030277482 (ISBN)
CHF 224,65 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This research monograph is highly contextual in the present era of spatial/spatio-temporal data explosion. The overall text contains many interesting results that are worth applying in practice, while it is also a source of intriguing and motivating questions for advanced research on spatial data science. The monograph is primarily prepared for graduate students of Computer Science, who wish to employ probabilistic graphical models, especially Bayesian networks (BNs), for applied research on spatial/spatio-temporal data. Students of any other discipline of engineering, science, and technology, will also find this monograph useful. Research students looking for a suitable problem for their MS or PhD thesis will also find this monograph beneficial. The open research problems as discussed with sufficient references in Chapter-8 and Chapter-9 can immensely help graduate researchers to identify topics of their own choice. The various illustrations and proofs presented throughout the monograph may help them to better understand the working principles of the models. The present monograph, containing sufficient description of the parameter learning and inference generation process for each enhanced BN model, can also serve as an algorithmic cookbook for the relevant system developers.

Introduction.- Standard Bayesian Network Models for Spatial Time Series Prediction.- Bayesian Network with added Residual Correction Mechanism.- Spatial Bayesian Network.- Semantic Bayesian Network.- Advanced Bayesian Network Models with Fuzzy Extension.- Comparative Study of Parameter Learning Complexity.- Spatial Time Series Prediction using Advanced BN Models- An Application Perspective.- Summary and Future Research.

Erscheinungsdatum
Reihe/Serie Studies in Computational Intelligence
Zusatzinfo XXIII, 149 p. 67 illus., 59 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 421 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik
Schlagworte Advanced Bayesian Network • Applied Machine Learning • Bayesian inference • Complexity • Computational Complexity • Computational Intelligence • graph-based model • parameter learning • Probabilistic Reasoning • Spatial time series prediction • spatio-temporal data
ISBN-13 9783030277482 / 9783030277482
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …

von Mustafa Suleyman; Michael Bhaskar

Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20