Enhanced Bayesian Network Models for Spatial Time Series Prediction
Recent Research Trend in Data-Driven Predictive Analytics
Seiten
2019
Springer International Publishing (Verlag)
9783030277482 (ISBN)
Springer International Publishing (Verlag)
9783030277482 (ISBN)
This research monograph is highly contextual in the present era of spatial/spatio-temporal data explosion. The overall text contains many interesting results that are worth applying in practice, while it is also a source of intriguing and motivating questions for advanced research on spatial data science. The monograph is primarily prepared for graduate students of Computer Science, who wish to employ probabilistic graphical models, especially Bayesian networks (BNs), for applied research on spatial/spatio-temporal data. Students of any other discipline of engineering, science, and technology, will also find this monograph useful. Research students looking for a suitable problem for their MS or PhD thesis will also find this monograph beneficial. The open research problems as discussed with sufficient references in Chapter-8 and Chapter-9 can immensely help graduate researchers to identify topics of their own choice. The various illustrations and proofs presented throughout the monograph may help them to better understand the working principles of the models. The present monograph, containing sufficient description of the parameter learning and inference generation process for each enhanced BN model, can also serve as an algorithmic cookbook for the relevant system developers.
Introduction.- Standard Bayesian Network Models for Spatial Time Series Prediction.- Bayesian Network with added Residual Correction Mechanism.- Spatial Bayesian Network.- Semantic Bayesian Network.- Advanced Bayesian Network Models with Fuzzy Extension.- Comparative Study of Parameter Learning Complexity.- Spatial Time Series Prediction using Advanced BN Models- An Application Perspective.- Summary and Future Research.
| Erscheinungsdatum | 21.11.2019 |
|---|---|
| Reihe/Serie | Studies in Computational Intelligence |
| Zusatzinfo | XXIII, 149 p. 67 illus., 59 illus. in color. |
| Verlagsort | Cham |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 421 g |
| Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
| Technik | |
| Schlagworte | Advanced Bayesian Network • Applied Machine Learning • Bayesian inference • Complexity • Computational Complexity • Computational Intelligence • graph-based model • parameter learning • Probabilistic Reasoning • Spatial time series prediction • spatio-temporal data |
| ISBN-13 | 9783030277482 / 9783030277482 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Eine praxisorientierte Einführung
Buch | Softcover (2025)
Springer Vieweg (Verlag)
CHF 53,15
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …
Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20
Buch | Softcover (2025)
Reclam, Philipp (Verlag)
CHF 11,20