Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
The Dirichlet Space and Related Function Spaces - Nicola Arcozzi, Richard Rochberg, Eric T. Sawyer, Brett D. Wick

The Dirichlet Space and Related Function Spaces

Buch | Hardcover
560 Seiten
2019
American Mathematical Society (Verlag)
978-1-4704-5082-3 (ISBN)
CHF 209,95 inkl. MwSt
  • Versand in 10-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Presents the theory of the Dirichlet space and related spaces starting with classical results and including some quite recent achievements like Dirichlet-type spaces of functions in several complex variables and the corona problem.
The study of the classical Dirichlet space is one of the central topics on the intersection of the theory of holomorphic functions and functional analysis. It was introduced about100 years ago and continues to be an area of active current research. The theory is related to such important themes as multipliers, reproducing kernels, and Besov spaces, among others. The authors present the theory of the Dirichlet space and related spaces starting with classical results and including some quite recent achievements like Dirichlet-type spaces of functions in several complex variables and the corona problem.

The first part of this book is an introduction to the function theory and operator theory of the classical Dirichlet space, a space of holomorphic functions on the unit disk defined by a smoothness criterion. The Dirichlet space is also a Hilbert space with a reproducing kernel, and is the model for the dyadic Dirichlet space, a sequence space defined on the dyadic tree. These various viewpoints are used to study a range of topics including the Pick property, multipliers, Carleson measures, boundary values, zero sets, interpolating sequences, the local Dirichlet integral, shift invariant subspaces, and Hankel forms. Recurring themes include analogies, sometimes weak and sometimes strong, with the classical Hardy space; and the analogy with the dyadic Dirichlet space.

The final chapters of the book focus on Besov spaces of holomorphic functions on the complex unit ball, a class of Banach spaces generalizing the Dirichlet space. Additional techniques are developed to work with the nonisotropic complex geometry, including a useful invariant definition of local oscillation and a sophisticated variation on the dyadic Dirichlet space. Descriptions are obtained of multipliers, Carleson measures, interpolating sequences, and multiplier interpolating sequences; $/overline/partial$ estimates are obtained to prove corona theorems.

Nicola Arcozzi, University of Bologna, Italy. Richard Rochberg, Washington University in Saint Louis, MO. Eric T. Sawyer, McMaster University, Hamilton, ON, Canada. Brett D. Wick, Washington University in Saint Louis, MO.

The Dirichlet space
Foundations: Geometry and analysis on the disk
Hilbert spaces of holomorphic functions
Intermezzo: Hardy spaces
Carleson measures
Analysis on trees
The Pick property
Interpolation
The Dirichlet space
Selected topics: Onto interpolation
Boundary values
Alternative norms and applications
Shift operators and invariant subspaces
Invariant subspaces of the Dirichlet shift
Bilinear forms on $/mathcal{D}$
Besov spaces on the ball: Besov spaces on balls and trees
Interpolating sequences
Spaces on trees
Corona theorems for Besov spaces in $/mathbb{C}^n$
Some functional analysis
Schur's test
Bibliography
Index

Erscheinungsdatum
Reihe/Serie Mathematical Surveys and Monographs
Verlagsort Providence
Sprache englisch
Maße 178 x 254 mm
Gewicht 1165 g
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-10 1-4704-5082-8 / 1470450828
ISBN-13 978-1-4704-5082-3 / 9781470450823
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich