Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Efficient Data Input/Output (I/O) for Finite Difference Time Domain (FDTD). Computation on Graphics Processing Unit (GPU) (eBook)

(Autor)

eBook Download: PDF
2019 | 1. Auflage
101 Seiten
GRIN Verlag
978-3-668-93954-7 (ISBN)

Lese- und Medienproben

Efficient Data Input/Output (I/O) for Finite Difference Time Domain (FDTD). Computation on Graphics Processing Unit (GPU) -  Somdip Dey
Systemvoraussetzungen
16,99 inkl. MwSt
(CHF 16,60)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Master's Thesis from the year 2014 in the subject Computer Science - Applied, grade: First, University of Manchester (School of Computer Science), course: Advanced Computer Science: Computer Systems Engineering, language: English, abstract: Due to recent advancement in technology, one of the popular ways of achieving performance with respect to execution time of programs is by utilizing massive parallelism power of GPU-based accelerator computing along with CPU computing. In GPU- based accelerator computing, the data intensive or computationally intensive part is computed on the GPU whereas the simple yet complex instructions are computed on the CPU in order to achieve massive speedup in execution time of the computer program executed on the computer system. In physics, especially in electromagnetism, Finite-Difference Time-Domain (FDTD) is a popular numerical analysis method, which is used to solve the set of Maxwells partial differential equations to unify and relate electric field with magnetic field. Since FDTD method is computationally intensive and has high level of parallelism in the computational implementation, for this reason for past few years researchers are trying to compute the computationally intensive part of FDTD methods on the GPU instead of CPU. Although computing parallelized parts of FDTD algorithms on the GPU achieve very good performance, but fail to gain very good speedup in execution time because of the very high latency between the CPU and GPU. Calculation results at each FDTD time-step is supposed to be produced and saved on the hard disk of the system. This can be called as data output of the FDTD methods, and the overlapping of data output and computation of the field values at next time step cannot be performed simultaneously. Because of this and latency gap between the CPU and GPU, there is a bottleneck in the performance of the data output of the GPU. This problem can be regarded as the inefficient performance of data input/output (I/O) of FDTD methods on GPU. Hence, this project focuses on this aforementioned problem and addresses to find solutions to improve the efficiency of the data I/O of FDTD computation on GPGPU (General Purpose Graphics Processing Unit).

Somdip Dey FRSA, also professionally known as InteliDey, is an Indian-born embedded machine learning researcher, educator, entrepreneur and electronic music producer. Dey is widely credited to co-develop the Nosh app, which is an artificial intelligence powered food management application, aiming to reduce food waste in the household. He is also the co-founder and CEO of Nosh Technologies, which is a deep tech company, developing cutting edge technologies to reduce food waste and improve sustainability of the planet. Dey is named a Fellow of the Royal Society of Arts, an MIT Innovator Under 35 Europe and a World IP Review Leader for his contributions in developing embedded machine learning technologies to reduce food waste and help the society.
Erscheint lt. Verlag 17.5.2019
Verlagsort München
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Schlagworte buffer • CPU • cuda • data I/O • electro magnetics • FDTD • finite difference methods • FORTRAN • GPGPU • GPU • High Performance Computing • HPC • ime domain analysis • multi-core computing • OpenACC • paralle architectures • Parallel Computing • Parallel Programming
ISBN-10 3-668-93954-3 / 3668939543
ISBN-13 978-3-668-93954-7 / 9783668939547
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95