Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Introduction to Monte-Carlo Methods for Transport and Diffusion Equations - Bernard Lapeyre, Etienne Pardoux, Remi Sentis

Introduction to Monte-Carlo Methods for Transport and Diffusion Equations

Buch | Hardcover
174 Seiten
2003
Oxford University Press (Verlag)
978-0-19-852592-9 (ISBN)
CHF 179,15 inkl. MwSt
This text is aimed at graduate students in mathematics, physics, engineering, economics, finance, and the biosciences that are interested in using Monte-Carlo methods for the resolution of real-life scenarios.
Monte-Carlo methods is the generic term given to numerical methods that use sampling of random numbers. This text is aimed at graduate students in mathematics, physics, engineering, economics, finance, and the biosciences that are interested in using Monte-Carlo methods for the resolution of partial differential equations, transport equations, the Boltzmann equation and the parabolic equations of diffusion. It includes applied examples, particularly in mathematical finance, along with discussion of the limits of the methods and description of specific techniques used in practice for each example.

This is the sixth volume in the Oxford Texts in Applied and Engineering Mathematics series, which includes texts based on taught courses that explain the mathematical or computational techniques required for the resolution of fundamental applied problems, from the undergraduate through to the graduate level. Other books in the series include: Jordan & Smith: Nonlinear Ordinary Differential Equations: An introduction to Dynamical Systems; Sobey: Introduction to Interactive Boundary Layer Theory; Scott: Nonlinear Science: Emergence and Dynamics of Coherent Structures; Tayler: Mathematical Models in Applied Mechanics; Ram-Mohan: Finite Element and Boundary Element Applications in Quantum Mechanics; Elishakoff and Ren: Finite Element Methods for Structures with Large Stochastic Variations.

1. Monte-Carlo methods and Integration ; 2. Transport equations and processes ; 3. The Monte-Carlo method for the transport equations ; 4. The Monte-Carlo method for the Boltzmann equation ; 5. The Monte-Carlo method for diffusion equations ; Bibliography ; Index

Reihe/Serie Oxford Texts in Applied and Engineering Mathematics ; 6
Übersetzer Alan Craig, Fionn Craig
Zusatzinfo 2 figures
Verlagsort Oxford
Sprache englisch
Maße 163 x 242 mm
Gewicht 387 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
ISBN-10 0-19-852592-3 / 0198525923
ISBN-13 978-0-19-852592-9 / 9780198525929
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich