Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Geometric Pressure for Multimodal Maps of the Interval - Feliks Przytycki, Juan Rivera-Letelier

Geometric Pressure for Multimodal Maps of the Interval

Buch | Softcover
81 Seiten
2019
American Mathematical Society (Verlag)
978-1-4704-3567-7 (ISBN)
CHF 128,30 inkl. MwSt
  • Titel z.Zt. nicht lieferbar
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This paper is an interval dynamics counterpart of three theories founded earlier by the authors in the setting of the iteration of rational maps on the Riemann sphere: the equivalence of several notions of non-uniform hyperbolicity, Geometric Pressure, and Nice Inducing Schemes methods leading to results in thermodynamical formalism.
This paper is an interval dynamics counterpart of three theories founded earlier by the authors, S. Smirnov and others in the setting of the iteration of rational maps on the Riemann sphere: the equivalence of several notions of non-uniform hyperbolicity, Geometric Pressure, and Nice Inducing Schemes methods leading to results in thermodynamical formalism.

The authors work in a setting of generalized multimodal maps, that is, smooth maps $f$ of a finite union of compact intervals $/widehat I$ in $/mathbb{R}$ into $/mathbb{R}$ with non-flat critical points, such that on its maximal forward invariant set $K$ the map $f$ is topologically transitive and has positive topological entropy. They prove that several notions of non-uniform hyperbolicity of $f|_K$ are equivalent (including uniform hyperbolicity on periodic orbits, TCE & all periodic orbits in $K$ hyperbolic repelling, Lyapunov hyperbolicity, and exponential shrinking of pull-backs). They prove that several definitions of geometric pressure $P(t)$, that is pressure for the map $f|_K$ and the potential $-t/log |f'|$, give the same value (including pressure on periodic orbits, ``tree'' pressure, variational pressures and conformal pressure). Finally they prove that, provided all periodic orbits in $K$ are hyperbolic repelling, the function $P(t)$ is real analytic for $t$ between the ``condensation'' and ``freezing'' parameters and that for each such $t$ there exists unique equilibrium (and conformal) measure satisfying strong statistical properties.

Feliks Przytycki, Polish Academy of Sciences, Warszawa, Poland. Juan Rivera-Letelier, University of Rochester, NY.

Introduction: The main results
Preliminaries
Non-uniformly hyperbolic interval maps
Equivalence of the definitions of geometric pressure
Pressure on periodic orbits
Nice inducing schemes
Analytic dependence of geometric pressure on temperature equilibria
Proof of key lemma: Induced pressure
Appendix A. More on generalized multimodal maps
Appendix B. Uniqueness of equilibrium via inducing
Appendix C. Conformal pressures
Bibliography

Erscheinungsdatum
Reihe/Serie Memoirs of the American Mathematical Society
Verlagsort Providence
Sprache englisch
Maße 178 x 254 mm
Gewicht 150 g
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-10 1-4704-3567-5 / 1470435675
ISBN-13 978-1-4704-3567-7 / 9781470435677
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch (2022)
Springer Spektrum (Verlag)
CHF 118,95