Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Hybrid Methods In Pattern Recognition -

Hybrid Methods In Pattern Recognition

Horst Bunke, Abraham Kandel (Herausgeber)

Buch | Hardcover
336 Seiten
2002
World Scientific Publishing Co Pte Ltd (Verlag)
9789810248321 (ISBN)
CHF 186,75 inkl. MwSt
  • Titel z.Zt. nicht lieferbar
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
A collection of articles describing progress in the field of hybrid methods in pattern recognition. It explores the combination of neural nets with fuzzy systems or hidden Markov models, neural networks for the processing of symbolic data structures, hybrid methods in data mining, and more.
The field of pattern recognition has seen enormous progress since its beginnings almost 50 years ago. A large number of different approaches have been proposed. Hybrid methods aim at combining the advantages of different paradigms within a single system.Hybrid Methods in Pattern Recognition is a collection of articles describing recent progress in this emerging field. It covers topics such as the combination of neural nets with fuzzy systems or hidden Markov models, neural networks for the processing of symbolic data structures, hybrid methods in data mining, the combination of symbolic and subsymbolic learning, and others. Also included is recent work on multiple classifier systems. Furthermore, the book deals with applications in on-line and off-line handwriting recognition, remotely sensed image interpretation, fingerprint identification, and automatic text categorization.

Neuro-fuzzy systems: fuzzification of neural networks for classification problems, H. Ishibuchi and M. Nii; neural networks for structural pattern recognition - adaptive graphic pattern recognition -foundations and perspectives, G. Adorni et al; adaptive self-organizing map in the graph domain, S. Gunter and H. Bunke. Clustering for hybrid systems: from numbers to information granules - a study in unsupervised learning and feature analysis, A. Bargiela and W. Pedrycz. Combining neural networks and hidden Markov models: combination of hidden Markov models and neural networks for hybrid statistical pattern recognition, G. Rigoll; from character to sentences - a hybrid neuro-Markovian system for on-line handwriting recognition, T. Artieres et al. Multiple classifier systems: multiple classifier combination - lessons and next steps, T.K. Ho; design of multiple classifier systems, F. Roli and G. Giacinto; fusing neural networks through fuzzy integration, A. Verikas et al. Applications of hybrid systems: hybrid data mining methods in image processing, A. Klose and R. Kruse; robust fingerprint identification based on hybrid pattern recognition methods, D.-W. Jung and R.-H. Park; text categorization using learned document features, M. Junker et al.

Erscheint lt. Verlag 22.5.2002
Reihe/Serie Series In Machine Perception And Artificial Intelligence ; 47
Verlagsort Singapore
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-13 9789810248321 / 9789810248321
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …

von Mustafa Suleyman; Michael Bhaskar

Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20