Machine Learning Kochbuch (eBook)
368 Seiten
O'Reilly (Verlag)
978-3-96010-307-3 (ISBN)
Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr.
Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln.
In diesem Kochbuch finden Sie Rezepte für:
- Vektoren, Matrizen und Arrays
- den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit
- das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl
- Modellbewertung und -auswahl
- lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn
- Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze
- das Speichern und Laden von trainierten Modellen
Chris Albon ist Data Scientist und Politikwissenschaftler mit einem Jahrzehnt Erfahrung in der Anwendung von statistischem Lernen, künstlicher Intelligenz und Software-Engineering in den Bereichen politischer, sozialer und humanitärer Bemühungen – von der Wahlbeobachtung bis zur Katastrophenhilfe. Derzeit ist Chris der Chief Data Scientist bei BRCK, einem kenianischen Start-up-Unternehmen, das ein robustes Netzwerk für Internetnutzer des Frontier-Markts entwickelt.
| Erscheint lt. Verlag | 22.3.2019 |
|---|---|
| Übersetzer | Frank Langenau |
| Verlagsort | Heidelberg |
| Sprache | deutsch |
| Themenwelt | Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge |
| Schlagworte | AI • Artificial Intelligence • Keras • KI • K-nächste Nachbarn • Künstliche Intelligenz • Neuronale Netze • Scikit Learn • Support Vector Machines |
| ISBN-10 | 3-96010-307-7 / 3960103077 |
| ISBN-13 | 978-3-96010-307-3 / 9783960103073 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich