Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Support Vector Machines in der Bilderkennung (eBook)

Entscheidungshilfe durch Algorithmen
eBook Download: PDF
2019 | 1. Auflage
23 Seiten
GRIN Verlag
9783668905115 (ISBN)

Lese- und Medienproben

Support Vector Machines in der Bilderkennung -  Niklas Würtele
Systemvoraussetzungen
15,99 inkl. MwSt
(CHF 15,60)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Studienarbeit aus dem Jahr 2018 im Fachbereich Mathematik - Algebra, Universität Augsburg, Sprache: Deutsch, Abstract: In der vorliegenden Arbeit geht es um Support Vector Machines in der Bilderkennung. Zur Lösung der meisten mathematischen Probleme benötigen wir einen Algorithmus, den wir rechnerisch ausführen können. Diese Abfolge von Operationen wandelt unser Problem als Input in eine Lösung als Output. Was aber, wenn wir einen solchen Algorithmus nicht haben? Zum Beispiel bei der Klassifizierung von E-Mail Spam oder bei der Bilderkennung ist dies oft der Fall. Da im E-Mail-Beispiel die Klassifizierung auch von Person zu Person unterschiedlich ist, wird man nur schwer einen allgemeingültigen Algorithmus für dieses Problem definieren können. Dieses Problem lässt sich allerdings mithilfe einer großen Menge an Daten lösen. Wenn wir nämlich selber klassifizieren, kann der Computer aus unseren Entscheidungen lernen und dadurch neue Objekte selbst einstufen. Eine solche Logik wollen wir nun bei der Erkennung von Haarwurzeln in Bildausschnitten einsetzen. Konkret sollen dazu Support Vector Machines (SVM) genutzt werden, ein Model, das zum überwachten Lernen gezählt wird, man kann also seine Resultate mit den richtigen Ergebnissen vergleichen und damit das Modell validieren. Dazu werden wir zunächst genauer auf dieses Modell eingehen und dann erklären, wie dieses mithilfe von Python auf unser Ausgangsproblem angewandt werden kann. SVMs sind in der Tat in der Lage, ohne Vorgabe einer konkreten Logik gegebene Daten sinnvoll zu klassifizieren. Ein weiterer Vorteil ist, dass im Gegensatz zu anderen Klassifizierungsalgorithmen durch die Transformation zu konvexen Problemen global optimiert wird. Bei höherdimensionalen Anwendungsgebieten wie in unserem Fall der Bilderkennung stößt man allerdings auch das Problem, dass lineare SVMs keine befriedigenden Ergebnisse mehr liefern. Hier auf Kernel SVMs umzusteigen lässt die Komplexität des Problems explodieren und übersteigt die Rechenleistung eines gewöhnlichen Heimcomputers. Für diesen Fall sind vermutlich andere Algorithmen, die gezielt Objekte wiedererkennen, besser geeignet.
Erscheint lt. Verlag 21.3.2019
Verlagsort München
Sprache deutsch
Themenwelt Mathematik / Informatik Mathematik
Schlagworte Algorithmen • Bilderkennung • Entscheidungshilfe • machines • Support • Vector
ISBN-13 9783668905115 / 9783668905115
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eine anwendungsorientierte Einführung

von Peter Tittmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 34,15
Stochastik: von Abweichungen bis Zufall

von René L. Schilling

eBook Download (2025)
De Gruyter (Verlag)
CHF 34,15