Robust Representation for Data Analytics
Springer International Publishing (Verlag)
978-3-319-86796-0 (ISBN)
Leveraging the theory of low-rank and sparse modeling, the authors develop robust feature representations under various learning paradigms, including unsupervised learning, supervised learning, semi-supervised learning, multi-view learning, transfer learning, and deep learning. Robust Representations for Data Analytics covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.
Introduction.- Fundamentals of Robust Representations.- Part 1: Robust Representation Models.- Robust Graph Construction.- Robust Subspace Learning.- Robust Multi-View Subspace Learning.- Part 11: Applications.- Robust Representations for Collaborative Filtering.- Robust Representations for Response Prediction.- Robust Representations for Outlier Detection.- Robust Representations for Person Re-Identification.- Robust Representations for Community Detection.- Index.
| Erscheint lt. Verlag | 4.8.2018 |
|---|---|
| Reihe/Serie | Advanced Information and Knowledge Processing |
| Zusatzinfo | XI, 224 p. 52 illus., 49 illus. in color. |
| Verlagsort | Cham |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 496 g |
| Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
| Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
| Schlagworte | Graph Construction • Multi-view learning • Outlier Detection • Robust Representations • subspace learning |
| ISBN-10 | 3-319-86796-2 / 3319867962 |
| ISBN-13 | 978-3-319-86796-0 / 9783319867960 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich