Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Mastering Machine Learning with R - Cory Lesmeister

Mastering Machine Learning with R

Advanced machine learning techniques for building smart applications with R 3.5, 3rd Edition

(Autor)

Buch | Softcover
354 Seiten
2019 | 3rd Revised edition
Packt Publishing Limited (Verlag)
978-1-78961-800-6 (ISBN)
CHF 54,10 inkl. MwSt
Machine learning is a field of AI where we build systems that learn from data. This book explains complicated concepts with real-world applications. It demonstrates the power of R and machine learning extensively while highlighting the constraints. Finally, it will walk you through topics such as text analysis, time series, and deep learning.
Stay updated with expert techniques for solving data analytics and machine learning challenges and gain insights from complex projects and power up your applications

Key Features

Build independent machine learning (ML) systems leveraging the best features of R 3.5
Understand and apply different machine learning techniques using real-world examples
Use methods such as multi-class classification, regression, and clustering

Book DescriptionGiven the growing popularity of the R-zerocost statistical programming environment, there has never been a better time to start applying ML to your data. This book will teach you advanced techniques in ML ,using? the latest code in R 3.5. You will delve into various complex features of supervised learning, unsupervised learning, and reinforcement learning algorithms to design efficient and powerful ML models.

This newly updated edition is packed with fresh examples covering a range of tasks from different domains. Mastering Machine Learning with R starts by showing you how to quickly manipulate data and prepare it for analysis. You will explore simple and complex models and understand how to compare them. You’ll also learn to use the latest library support, such as TensorFlow and Keras-R, for performing advanced computations. Additionally, you’ll explore complex topics, such as natural language processing (NLP), time series analysis, and clustering, which will further refine your skills in developing applications. Each chapter will help you implement advanced ML algorithms using real-world examples. You’ll even be introduced to reinforcement learning, along with its various use cases and models. In the concluding chapters, you’ll get a glimpse into how some of these blackbox models can be diagnosed and understood.

By the end of this book, you’ll be equipped with the skills to deploy ML techniques in your own projects or at work.

What you will learn

Prepare data for machine learning methods with ease
Understand how to write production-ready code and package it for use
Produce simple and effective data visualizations for improved insights
Master advanced methods, such as Boosted Trees and deep neural networks
Use natural language processing to extract insights in relation to text
Implement tree-based classifiers, including Random Forest and Boosted Tree

Who this book is forThis book is for data science professionals, machine learning engineers, or anyone who is looking for the ideal guide to help them implement advanced machine learning algorithms. The book will help you take your skills to the next level and advance further in this field. Working knowledge of machine learning with R is mandatory.

Cory Lesmeister has over fourteen years of quantitative experience and is currently a senior data scientist for the Advanced Analytics team at Cummins, Inc. in Columbus, Indiana. Cory spent 16 years at Eli Lilly and Company in sales, market research, Lean Six Sigma, marketing analytics, and new product forecasting. He also has several years of experience in the insurance and banking industries, both as a consultant and as a manager of marketing analytics. A former US Army active duty and reserve officer, Cory was stationed in Baghdad, Iraq, in 2009 serving as the strategic advisor to the 29,000-person Iraqi Oil Police, succeeding where others failed by acquiring and delivering promised equipment to help the country secure and protect its oil infrastructure. Cory has a BBA in Aviation Administration from the University of North Dakota and a commercial helicopter license.

Table of Contents

Preparing and Understanding Data
Linear Regression
Logistic Regression
Advanced Feature Selection in Linear Models
K-Nearest Neighbors and Support Vector Machines
Tree-Based Classification
Neural Networks and Deep Learning
Creating Ensembles and Multiclass Methods
Cluster Analysis
Principal Component Analysis
Association Analysis
Time Series and Causality
Text Mining
Appendix A- Creating a Package

Erscheinungsdatum
Verlagsort Birmingham
Sprache englisch
Maße 75 x 93 mm
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Informatik Theorie / Studium
ISBN-10 1-78961-800-2 / 1789618002
ISBN-13 978-1-78961-800-6 / 9781789618006
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Der Leitfaden für die Praxis

von Christiana Klingenberg; Kristin Weber

Buch (2025)
Hanser (Verlag)
CHF 69,95