Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Strengthening Deep Neural Networks

Making AI Less Susceptible to Adversarial Trickery

(Autor)

Buch | Softcover
250 Seiten
2019
O'Reilly Media (Verlag)
9781492044956 (ISBN)
CHF 97,75 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This practical book examines real-world scenarios where DNNs—the algorithms intrinsic to much of AI—are used daily to process image, audio, and video data. Author Katy Warr considers attack motivations, the risks posed by this adversarial input, and methods for increasing AI robustness to these attacks.
As deep neural networks (DNNs) become increasingly common in real-world applications, the potential to deliberately "fool" them with data that wouldn’t trick a human presents a new attack vector. This practical book examines real-world scenarios where DNNs—the algorithms intrinsic to much of AI—are used daily to process image, audio, and video data.

Author Katy Warr considers attack motivations, the risks posed by this adversarial input, and methods for increasing AI robustness to these attacks. If you’re a data scientist developing DNN algorithms, a security architect interested in how to make AI systems more resilient to attack, or someone fascinated by the differences between artificial and biological perception, this book is for you.

Delve into DNNs and discover how they could be tricked by adversarial input
Investigate methods used to generate adversarial input capable of fooling DNNs
Explore real-world scenarios and model the adversarial threat
Evaluate neural network robustness; learn methods to increase resilience of AI systems to adversarial data
Examine some ways in which AI might become better at mimicking human perception in years to come

Katy Warr works at Roke Manor Research in the UK creating solutions for complex real-world problems. She specializes in AI and data analytics and leads the company's technical strategy in these areas. Previously she worked at IBM UK Laboratories, architecting and developing software for a variety of distributed enterprise products with an emphasis on transactional integrity and security. Katy gained her degree in AI and Computer Science from the University of Edinburgh at a time when there was insufficient compute power and data available for deep learning to be much more than a theoretical pursuit. Fast forward a few years and she considers herself fortunate to witness this exciting field becoming mainstream.

Erscheinungsdatum
Verlagsort Sebastopol
Sprache englisch
Maße 178 x 232 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
ISBN-13 9781492044956 / 9781492044956
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 53,15
Teil 2 der gestreckten Abschlussprüfung Fachinformatiker/-in …

von Dirk Hardy; Annette Schellenberg; Achim Stiefel

Buch | Softcover (2025)
Europa-Lehrmittel (Verlag)
CHF 37,90