Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Intelligent Random Walk: An Approach Based on Learning Automata (eBook)

eBook Download: PDF
2019
55 Seiten
Springer International Publishing (Verlag)
978-3-030-10883-0 (ISBN)

Lese- und Medienproben

Intelligent Random Walk: An Approach Based on Learning Automata - Ali Mohammad Saghiri, M. Daliri Khomami, Mohammad Reza Meybodi
Systemvoraussetzungen
53,49 inkl. MwSt
(CHF 52,25)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book examines the intelligent random walk algorithms based on learning automata: these versions of random walk algorithms gradually obtain required information from the nature of the application to improve their efficiency. The book also describes the corresponding applications of this type of random walk algorithm, particularly as an efficient prediction model for large-scale networks such as peer-to-peer and social networks. The book opens new horizons for designing prediction models and problem-solving methods based on intelligent random walk algorithms, which are used for modeling and simulation in various types of networks, including computer, social and biological networks, and which may be employed a wide range of real-world applications.

Random walk algorithms: Definitions, weaknesses, and learning automata based approach.- Intelligent Models of Random Walk.- Applications.- Conclusions.

Erscheint lt. Verlag 2.1.2019
Reihe/Serie SpringerBriefs in Applied Sciences and Technology
SpringerBriefs in Applied Sciences and Technology
SpringerBriefs in Computational Intelligence
SpringerBriefs in Computational Intelligence
SpringerBriefs in Computational Intelligence
Zusatzinfo IX, 55 p. 31 illus., 16 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik
Technik Maschinenbau
Schlagworte Artificial Intelligence • Deep learning • Distributed Systems • evolutionary algorithms • Intelligent Random Walk • learning automata • Learning Automaton • Neural networks • Random Walk Algorithms
ISBN-10 3-030-10883-X / 303010883X
ISBN-13 978-3-030-10883-0 / 9783030108830
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Die Grundlage der Digitalisierung

von Knut Hildebrand; Michael Mielke; Marcus Gebauer

eBook Download (2025)
Springer Fachmedien Wiesbaden (Verlag)
CHF 29,30
Die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

eBook Download (2024)
C.H.Beck (Verlag)
CHF 17,55