Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Broad Learning Through Fusions - Jiawei Zhang, Philip S. Yu

Broad Learning Through Fusions

An Application on Social Networks
Buch | Hardcover
XV, 419 Seiten
2019
Springer International Publishing (Verlag)
978-3-030-12527-1 (ISBN)
CHF 149,75 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book offers a clear and comprehensive introduction to broad learning, one of the novel learning problems studied in data mining and machine learning. Broad learning aims at fusing multiple large-scale information sources of diverse varieties together, and carrying out synergistic data mining tasks across these fused sources in one unified analytic. This book takes online social networks as an application example to introduce the latest alignment and knowledge discovery algorithms. Besides the overview of broad learning, machine learning and social network basics, specific topics covered in this book include network alignment, link prediction, community detection, information diffusion, viral marketing, and network embedding.

Jiawei Zhang is Assistant Professor in the Department of Computer Science at Florida State University. In 2017 he founded IFM Lab, a research oriented academic laboratory, providing the latest information on fusion learning and data mining research works and application tools to both academia and industry. Philip S. Yu is Professor in the Department of Computer Science at the University of Illinois at Chicago and also holds the Wexler Chair in Information and Technology. He was manager of the Software Tools and Techniques group at the IBM Thomas J. Watson Research Center. Dr. Yu has published more than 500 papers in refereed journals and conferences. He holds or has applied for more than 300 US patents.

1 Broad Learning Introduction.- 2 Machine Learning Overview.- 3 Social Network Overview.- 4 Supervised Network Alignment.- 5 Unsupervised Network Alignment.- 6 Semi-supervised Network Alignment.- 7 Link Prediction.- 8 Community Detection.- 9 Information Diffusion.- 10 Viral Marketing.- 11 Network Embedding.- 12 Frontier and Future Directions.- References.


Erscheinungsdatum
Zusatzinfo XV, 419 p. 104 illus., 81 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 178 x 254 mm
Gewicht 1004 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Schlagworte Data Mining • data structures • fusion learning • machine learning • network alignment • Social Networks
ISBN-10 3-030-12527-0 / 3030125270
ISBN-13 978-3-030-12527-1 / 9783030125271
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eine Einführung mit Python, Scikit-Learn und TensorFlow

von Oliver Zeigermann; Chi Nhan Nguyen

Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 27,85
Von den Grundlagen bis zum Produktiveinsatz

von Anatoly Zelenin; Alexander Kropp

Buch (2025)
Hanser (Verlag)
CHF 69,95