Geometric Topology
American Mathematical Society (Verlag)
978-0-8218-5182-1 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
The $3$-torus is Kervaire by A. J. Duncan and J. Howie A topological interpretation of the Atiyah-Patodi-Singer invariant by M. Farber and J. Levine On groups of special NEC type--A Freiheitssatz and related results for a class of multi-relator groups by B. Fine and G. Rosenberger Collapsing and reconstruction of manifolds by D. Gillman, S. Matveev, and D. Rolfsen Metrics on manifolds with convex or concave boundary by J. Hass Geometric structures on branched covers over universal links by K. N. Jones Link homotopy and skein modules of $3$-manifolds by U. Kaiser Bordism of link maps and selfintersections by U. Koschorke The monodromy of the Brieskorn bundle by A. Leibman and D. Markushevich Verlinde formulae for surfaces with spin structure by G. Masbaum and P. Vogel Knots that cannot be obtained from a trivial knot by twisting by K. Miyazaki and A. Yasuhara The arithmetic of braids and a statement of chisini by B. Moishezon On tunnel number and connected sum of knots and links by K. Morimoto Essential laminations in $3$-manifolds obtained by surgery on $2$-bridge knots by R. Naimi A dynamical system approach to free actions on $/mathbb R$-trees: A survey with complements by F. Paulin On a tangle presentation of the mapping class groups of surfaces by S. Matveev and M. Polyak Thin position for $3$-manifolds by M. Scharlemann and A. Thompson On embeddings of a graph into $R^3$ by K. Taniyama.
| Erscheint lt. Verlag | 30.6.1994 |
|---|---|
| Reihe/Serie | Contemporary Mathematics |
| Zusatzinfo | Illustrations |
| Verlagsort | Providence |
| Sprache | englisch |
| Gewicht | 482 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
| ISBN-10 | 0-8218-5182-9 / 0821851829 |
| ISBN-13 | 978-0-8218-5182-1 / 9780821851821 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich