Dilations, Linear Matrix Inequalities, the Matrix Cube Problem and Beta Distributions
American Mathematical Society (Verlag)
978-1-4704-3455-7 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
J. William Helton, University of California, San Diego, California. Igor Klep, The University of Auckland, New Zealand. Scott McCullough, University of Florida, Gainesville, Florida. Markus Schweighofer, Universitat Konstanz, Germany.
Introduction
Dilations and Free Spectrahedral Inclusions
Lifting and Averaging
A Simplified Form for $/vartheta $
$/vartheta$ is the Optimal Bound
The Optimality Condition $/alpha =/beta $ in Terms of Beta Functions
Rank versus Size for the Matrix Cube
Free Spectrahedral Inclusion Generalities
Reformulation of the Optimization Problem
Simmons' Theorem for Half Integers
Bounds on the Median and the Equipoint of the Beta Distribution
Proof of Theorem 2.1
Estimating $/vartheta (d)$ for Odd $d$.
Dilations and Inclusions of Balls
Probabilistic Theorems and Interpretations continued
Bibliography
Index.
| Erscheinungsdatum | 04.02.2019 |
|---|---|
| Reihe/Serie | Memoirs of the American Mathematical Society |
| Verlagsort | Providence |
| Sprache | englisch |
| Maße | 178 x 254 mm |
| Gewicht | 185 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| ISBN-10 | 1-4704-3455-5 / 1470434555 |
| ISBN-13 | 978-1-4704-3455-7 / 9781470434557 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich