Summability of Multi-Dimensional Fourier Series and Hardy Spaces
Seiten
2002
Kluwer Academic Publishers (Verlag)
978-1-4020-0564-0 (ISBN)
Kluwer Academic Publishers (Verlag)
978-1-4020-0564-0 (ISBN)
The history of martingale theory goes back to the early fifties when Doob [57] pointed out the connection between martingales and analytic functions. On the basis of Burkholder's scientific achievements the mar tingale theory can perfectly well be applied in complex analysis and in the theory of classical Hardy spaces. This connection is the main point of Durrett's book [60]. The martingale theory can also be well applied in stochastics and mathematical finance. The theories of the one-parameter martingale and the classical Hardy spaces are discussed exhaustively in the literature (see Garsia [83], Neveu [138], Dellacherie and Meyer [54, 55], Long [124], Weisz [216] and Duren [59], Stein [193, 194], Stein and Weiss [192], Lu [125], Uchiyama [205]). The theory of more-parameter martingales and martingale Hardy spaces is investigated in Imkeller [107] and Weisz [216]. This is the first mono graph which considers the theory of more-parameter classical Hardy spaces. The methods of proofs for one and several parameters are en tirely different; in most cases the theorems stated for several parameters are much more difficult to verify. The so-called atomic decomposition method that can be applied both in the one-and more-parameter cases, was considered for martingales by the author in [216].
1. Multi-Dimensional Dyadic Hardy Spaces.- 2. Multi-Dimensional Classical Hardy Spaces.- 3. Summability of D-Dimensional Walsh-Fourier Series.- 4. The D-Dimensional Dyadic Derivative.- 5. Summability of D-Dimensional Trigonometric-Fourier Series.- 6. Summability of D-Dimensional Fourier Transforms.- 7. spline and Ciesielski Systems.- References.
| Erscheint lt. Verlag | 31.3.2002 |
|---|---|
| Reihe/Serie | Mathematics and Its Applications ; 541 | Mathematics and Its Applications ; 541 |
| Zusatzinfo | XV, 332 p. |
| Sprache | englisch |
| Maße | 156 x 234 mm |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| ISBN-10 | 1-4020-0564-4 / 1402005644 |
| ISBN-13 | 978-1-4020-0564-0 / 9781402005640 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90
Eine anwendungsorientierte Einführung
Buch | Softcover (2024)
Springer Spektrum (Verlag)
CHF 55,95