Strichartz Estimates and the Cauchy Problem for the Gravity Water Waves Equations
Seiten
2019
American Mathematical Society (Verlag)
978-1-4704-3203-4 (ISBN)
American Mathematical Society (Verlag)
978-1-4704-3203-4 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
Devoted to the proof of a well-posedness result for the gravity water waves equations, in arbitrary dimension and in fluid domains with general bottoms, when the initial velocity field is not necessarily Lipschitz. For two-dimensional waves, the authors consider solutions such that the curvature of the initial free surface does not belong to $L^2$.
This memoir is devoted to the proof of a well-posedness result for the gravity water waves equations, in arbitrary dimension and in fluid domains with general bottoms, when the initial velocity field is not necessarily Lipschitz. Moreover, for two-dimensional waves, the authors consider solutions such that the curvature of the initial free surface does not belong to $L^2$. The proof is entirely based on the Eulerian formulation of the water waves equations, using microlocal analysis to obtain sharp Sobolev and Holder estimates. The authors first prove tame estimates in Sobolev spaces depending linearly on Holder norms and then use the dispersive properties of the water-waves system, namely Strichartz estimates, to control these Holder norms.
This memoir is devoted to the proof of a well-posedness result for the gravity water waves equations, in arbitrary dimension and in fluid domains with general bottoms, when the initial velocity field is not necessarily Lipschitz. Moreover, for two-dimensional waves, the authors consider solutions such that the curvature of the initial free surface does not belong to $L^2$. The proof is entirely based on the Eulerian formulation of the water waves equations, using microlocal analysis to obtain sharp Sobolev and Holder estimates. The authors first prove tame estimates in Sobolev spaces depending linearly on Holder norms and then use the dispersive properties of the water-waves system, namely Strichartz estimates, to control these Holder norms.
T. Alazard, Ecole Normale Superieure, Paris, France. N. Burq, Universite Paris-Sud, Orsay, France. C. Zuily, Universite Paris-Sud, Orsay, France.
Introduction
Strichartz estimates
Cauchy problem
Appendix A. Paradifferential calculus
Appendix B. Tame estimates for the Dirichlet-Neumann operator
Appendix C. Estimates for the Taylor coefficient
Appendix D. Sobolev estimates
Appendix E. Proof of a technical result
Bibliography.
| Erscheinungsdatum | 20.02.2019 |
|---|---|
| Reihe/Serie | Memoirs of the American Mathematical Society |
| Verlagsort | Providence |
| Sprache | englisch |
| Maße | 178 x 254 mm |
| Gewicht | 185 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
| ISBN-10 | 1-4704-3203-X / 147043203X |
| ISBN-13 | 978-1-4704-3203-4 / 9781470432034 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90