Continuous-Time Random Walks for the Numerical Solution of Stochastic Differential Equations
Seiten
2019
American Mathematical Society (Verlag)
978-1-4704-3181-5 (ISBN)
American Mathematical Society (Verlag)
978-1-4704-3181-5 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
Introduces time-continuous numerical schemes to simulate stochastic differential equations (SDEs) arising in mathematical finance, population dynamics, chemical kinetics, epidemiology, biophysics, and polymeric fluids.
This paper introduces time-continuous numerical schemes to simulate stochastic differential equations (SDEs) arising in mathematical finance, population dynamics, chemical kinetics, epidemiology, biophysics, and polymeric fluids. These schemes are obtained by spatially discretizing the Kolmogorov equation associated with the SDE in such a way that the resulting semi-discrete equation generates a Markov jump process that can be realized exactly using a Monte Carlo method. In this construction the jump size of the approximation can be bounded uniformly in space, which often guarantees that the schemes are numerically stable for both finite and long time simulation of SDEs.
This paper introduces time-continuous numerical schemes to simulate stochastic differential equations (SDEs) arising in mathematical finance, population dynamics, chemical kinetics, epidemiology, biophysics, and polymeric fluids. These schemes are obtained by spatially discretizing the Kolmogorov equation associated with the SDE in such a way that the resulting semi-discrete equation generates a Markov jump process that can be realized exactly using a Monte Carlo method. In this construction the jump size of the approximation can be bounded uniformly in space, which often guarantees that the schemes are numerically stable for both finite and long time simulation of SDEs.
Nawaf Bou-Rabee, Rutgers University Camden, NJ. Eric Vanden-Eijnden, Courant Institute of Mathematical Sciences, New York University, NY.
Introduction
Algorithms
Examples and applications
Analysis on gridded state spaces
Analysis on gridless state spaces
Tridiagonal case
Conclusion and outlook
Bibliography.
| Erscheinungsdatum | 31.10.2018 |
|---|---|
| Reihe/Serie | Memoirs of the American Mathematical Society |
| Verlagsort | Providence |
| Sprache | englisch |
| Maße | 178 x 254 mm |
| Gewicht | 205 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
| ISBN-10 | 1-4704-3181-5 / 1470431815 |
| ISBN-13 | 978-1-4704-3181-5 / 9781470431815 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Differentialrechnung im ℝⁿ, gewöhnliche Differentialgleichungen
Buch | Softcover (2025)
Springer Spektrum (Verlag)
CHF 46,15
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90