Advances in Intelligent Data Analysis XVII
Springer International Publishing (Verlag)
978-3-030-01767-5 (ISBN)
Elements of an Automatic Data Scientist.- The Need for Interpretability Biases Open Data Science.- Automatic POI Matching Using an Outlier Detection Based Approach.- Fact Checking from Natural Text with Probabilistic Soft Logic.- ConvoMap: Using Convolution to Order Boolean Data.- Training Neural Networks to distinguish craving smokers, non-craving smokers, and non-smokers.- Missing Data Imputation via Denoising Autoencoders: the untold story.- Online Non-Linear Gradient Boosting in Multi-Latent Spaces.- MDP-based Itinerary Recommendation using Geo-Tagged Social Media.- Multiview Learning of Weighted Majority Vote by Bregman Divergence Minimization.- Non-Negative Local Sparse Coding for Subspace Clustering.- Pushing the Envelope in Overlapping Communities Detection.-Right for the Right Reason: Training Agnostic Networks.- Link Prediction in Multi-Layer Networks and its Application to Drug Design.- A hierarchical Ornstein-Uhlenbeck model for stochastic time series analysis.- Analysing the footprint of classi_ers in overlapped and imbalanced contexts.- Tree-based Cost Sensitive Methods for Fraud Detection in Imbalanced Data.- Reduction Stumps for Multi-Class Classification.- Decomposition of quantitative Gaifman graphs as a data analysis tool.- Exploring the Effects of Data Distribution in Missing Data Imputation.- Communication-free Widened Learning of Bayesian Network Classifiers Using Hashed Fiedler Vectors.- Expert finding in Citizen Science platform for biodiversity monitoring via weighted PageRank algorithm.- Random forests with latent variables to foster feature selection in the context of highly correlated variables. Illustration with a bioinformatics application.-Don't Rule Out Simple Models Prematurely: a Large Scale Benchmark Comparing Linear and Non-linear Classifiers in OpenML.- Detecting Shifts in Public Opinion: a big data study of global news content.- Biased Embeddings from Wild Data: Measuring, Understanding and Removing.- Real-Time Excavation Detection at Construction Sites using Deep Learning.- COBRAS: Interactive Clustering with Pairwise Queries.- Automatically Wrangling Spreadsheets into Machine Learning Data Formats.- Learned Feature Generation for Molecules.
| Erscheinungsdatum | 06.10.2018 |
|---|---|
| Reihe/Serie | Information Systems and Applications, incl. Internet/Web, and HCI | Lecture Notes in Computer Science |
| Zusatzinfo | XIII, 394 p. 133 illus. |
| Verlagsort | Cham |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 623 g |
| Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
| Schlagworte | adaptive boosting • Artificial Intelligence • Bayesian • Bayesian networks • Boosting • classification • Clustering • clustering algorithms • Data Mining • graph-based • Graphic methods • graph theory • machine learning • Semantics • Social Networking • Social Networks • Support Vector Machines (SVM) |
| ISBN-10 | 3-030-01767-2 / 3030017672 |
| ISBN-13 | 978-3-030-01767-5 / 9783030017675 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich