Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Learning Representation for Multi-View Data Analysis - Zhengming Ding, Handong Zhao, Yun Fu

Learning Representation for Multi-View Data Analysis

Models and Applications
Buch | Hardcover
X, 268 Seiten
2018
Springer International Publishing (Verlag)
978-3-030-00733-1 (ISBN)
CHF 194,70 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

This book equips readers to handle complex multi-view data representation, centered around several major visual applications, sharing many tips and insights through a unified learning framework. This framework is able to model most existing multi-view learning and domain adaptation, enriching readers' understanding from their similarity, and differences based on data organization and problem settings, as well as the research goal.

A comprehensive review exhaustively provides the key recent research on multi-view data analysis, i.e., multi-view clustering, multi-view classification, zero-shot learning, and domain adaption. More practical challenges in multi-view data analysis are discussed including incomplete, unbalanced and large-scale multi-view learning. Learning Representation for Multi-View Data Analysis covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.

Introduction.- Multi-view Clustering with Complete Information.- Multi-view Clustering with Partial Information.- Multi-view Outlier Detection.- Multi-view Transformation Learning.- Zero-Shot Learning.- Missing Modality Transfer Learning.- Deep Domain Adaptation.- Deep Domain Generalization. 

"The book should be well received by advanced postgraduate students and data (especially big data) analysts. A background in statistics, mathematics, and computing is a prerequisite for reading. It is surely a must-have reference book for any scientific library." (Soubhik Chakraborty, Computing Reviews, May 07, 2019)

“The book should be well received by advanced postgraduate students and data (especially big data) analysts. A background in statistics, mathematics, and computing is a prerequisite for reading. It is surely a must-have reference book for any scientific library.” (Soubhik Chakraborty, Computing Reviews, May 07, 2019)

Erscheinungsdatum
Reihe/Serie Advanced Information and Knowledge Processing
Zusatzinfo X, 268 p. 76 illus., 69 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 577 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Clustering • Deep learning • matrix factorization • Multi-view Data • Subspace Learing • transfer learning
ISBN-10 3-030-00733-2 / 3030007332
ISBN-13 978-3-030-00733-1 / 9783030007331
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eine Einführung mit Python, Scikit-Learn und TensorFlow

von Oliver Zeigermann; Chi Nhan Nguyen

Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 27,85
Von den Grundlagen bis zum Produktiveinsatz

von Anatoly Zelenin; Alexander Kropp

Buch (2025)
Hanser (Verlag)
CHF 69,95