Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Practical Social Network Analysis with Python - Krishna Raj P.M., Ankith Mohan, K.G. Srinivasa

Practical Social Network Analysis with Python

Buch | Hardcover
XXXI, 329 Seiten
2018
Springer International Publishing (Verlag)
978-3-319-96745-5 (ISBN)
CHF 209,70 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

This book focuses on social network analysis from a computational perspective, introducing readers to the fundamental aspects of network theory by discussing the various metrics used to measure the social network. It covers different forms of graphs and their analysis using techniques like filtering, clustering and rule mining, as well as important theories like small world phenomenon. It also presents methods for identifying influential nodes in the network and information dissemination models. Further, it uses examples to explain the tools for visualising large-scale networks, and explores emerging topics like big data and deep learning in the context of social network analysis.

With the Internet becoming part of our everyday lives, social networking tools are used as the primary means of communication. And as the volume and speed of such data is increasing rapidly, there is a need to apply computational techniques to interpret and understand it. Moreover, relationships in molecular structures, co-authors in scientific journals, and developers in a software community can also be understood better by visualising them as networks.

This book brings together the theory and practice of social network analysis and includes mathematical concepts, computational techniques and examples from the real world to offer readers an overview of this domain.


Dr. Krishna Raj P.M. is an Associate Professor at the Department of Information Science and Engineering at Ramaiah Institute of Technology, Bengaluru, India. Mr. Ankith Mohan is a Research Associate at the same institution. Dr. Srinivasa K.G. is an Associate Professor at the Department of Information Technology at Ch. Brahm Prakash Government Engineering College, Delhi, India.

Chapter 1. Basics of Graph Theory.- Chapter 2. Graph Structure of the Web.- Chapter 3. Random Graph Models.-  Chapter 4. Small World Phenomena.- Chapter 5. Graph Structure of Facebook.- Chapter 6. Peer-To-Peer Networks.- Chapter 7. Signed Networks.- Chapter 8. Cascading in Social Networks.- Chapter 9. In uence Maximisation.- Chapter 10. Outbreak Detection.- Chapter 11. Power Law.- Chapter 12. Kronecker Graphs.- Chapter 13. Link Analysis.- Chapter 14. Community Detection.- Chapter 15. Representation Learning on Graph.

Erscheinungsdatum
Reihe/Serie Computer Communications and Networks
Zusatzinfo XXXI, 329 p. 186 illus., 73 illus. in color. With online files/update.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 731 g
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Informatik Netzwerke
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Mathematik / Informatik Informatik Web / Internet
Schlagworte graph analysis • Igraph • large scale networks • social network analysis • Stanford Network Analysis Platform (SNAP)
ISBN-10 3-319-96745-2 / 3319967452
ISBN-13 978-3-319-96745-5 / 9783319967455
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Der Leitfaden für die Praxis

von Christiana Klingenberg; Kristin Weber

Buch (2025)
Hanser (Verlag)
CHF 69,95