Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Multiscale Forecasting Models - Lida Mercedes Barba Maggi

Multiscale Forecasting Models

Buch | Hardcover
XXIV, 124 Seiten
2018 | 1st ed. 2018
Springer International Publishing (Verlag)
978-3-319-94991-8 (ISBN)
CHF 164,75 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

This book presents two new decomposition methods to decompose a time series in intrinsic components of low and high frequencies. The methods are based on Singular Value Decomposition (SVD) of a Hankel matrix (HSVD). The proposed decomposition is used to improve the accuracy of linear and nonlinear auto-regressive models.

Linear Auto-regressive models (AR, ARMA and ARIMA) and Auto-regressive Neural Networks (ANNs) have been found insufficient because of the highly complicated nature of some time series. Hybrid models are a recent solution to deal with non-stationary processes which combine pre-processing techniques with conventional forecasters, some pre-processing techniques broadly implemented are Singular Spectrum Analysis (SSA) and Stationary Wavelet Transform (SWT). Although the flexibility of SSA and SWT allows their usage in a wide range of forecast problems, there is a lack of standard methods to select their parameters.

The proposed decomposition HSVD and Multilevel SVD are described in detail through time series coming from the transport and fishery sectors. Further, for comparison purposes, it is evaluated the forecast accuracy reached by SSA and SWT, both jointly with AR-based models and ANNs.


Lida Mercedes Barba Maggi earned a PhD degree in Informatics Engineering from the Pontificia Universidad Católica de Valparaíso, Chile, in 2017. She is currently affiliated with the Universidad Nacional de Chimborazo in Ecuador. Her research interests include Analysis of time series, Forecast and estimate based on mathematical and statistical models, Forecast and estimate based on artificial intelligence, and Optimization Algorithms.

Dedication.- Foreword.- Preface.- Acknowledgement.- List of Tables.- List of Figures.- Acronyms.- 1. Times Series Analysis.- 2. Forecasting based on Hankel Singular Value Decomposition.- 3.Multi-step ahead forecasting.- 4. Multilevel Singular Value Decomposition.

Erscheinungsdatum
Zusatzinfo XXIV, 124 p. 91 illus., 89 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 391 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Artificial Neural Networks • Forecasting • Hankel matrix • singular spectrum analysis • singular value decomposition • Stationary Wavelet Decomposition • Time Series
ISBN-10 3-319-94991-8 / 3319949918
ISBN-13 978-3-319-94991-8 / 9783319949918
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,95