Degree Spectra of Relations on a Cone
Seiten
2018
American Mathematical Society (Verlag)
978-1-4704-2839-6 (ISBN)
American Mathematical Society (Verlag)
978-1-4704-2839-6 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
Let $/mathcal A$ be a mathematical structure with an additional relation $R$. The author is interested in the degree spectrum of $R$, either among computable copies of $/mathcal A$ when $(/mathcal A,R)$ is a ``natural'' structure, or (to make this rigorous) among copies of $(/mathcal A,R)$ computable in a large degree d. He introduces the partial order of degree spectra on a cone and begin the study of these objects. Using a result of Harizanov--that, assuming an effectiveness condition on $/mathcal A$ and $R$, if $R$ is not intrinsically computable, then its degree spectrum contains all c.e. degrees--the author shows that there is a minimal non-trivial degree spectrum on a cone, consisting of the c.e. degrees.
Matthew Harrison-Trainor, University of California, Berkeley, California.
Introduction
Preliminaries
Degree spectra between the C.E. degrees and the D.C.E. degrees
Degree spectra of relations on the naturals
A ``fullness'' theorem for 2-CEA degrees
Further questions
Appendix A. relativizing Harizanov's theorem on C.E. degrees
Bibliography
Index of notation and terminology.
| Erscheinungsdatum | 22.08.2018 |
|---|---|
| Reihe/Serie | Memoirs of the American Mathematical Society |
| Verlagsort | Providence |
| Sprache | englisch |
| Maße | 178 x 254 mm |
| Gewicht | 187 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
| ISBN-10 | 1-4704-2839-3 / 1470428393 |
| ISBN-13 | 978-1-4704-2839-6 / 9781470428396 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
ein Übungsbuch für Fachhochschulen
Buch | Hardcover (2023)
Carl Hanser (Verlag)
CHF 23,75