Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Inductive Logic Programming -

Inductive Logic Programming

27th International Conference, ILP 2017, Orléans, France, September 4-6, 2017, Revised Selected Papers
Buch | Softcover
X, 185 Seiten
2018
Springer International Publishing (Verlag)
9783319780894 (ISBN)
CHF 74,85 inkl. MwSt

This book constitutes the thoroughly refereed post-conference proceedings of the 27th International Conference on Inductive Logic Programming, ILP 2017, held in Orléans, France, in September 2017.
The 12 full papers presented were carefully reviewed and selected from numerous submissions.
Inductive Logic Programming (ILP) is a subfield of machine learning, which originally relied on logic programming as a uniform representation language for expressing examples, background knowledge and hypotheses. Due to its strong representation formalism, based on first-order logic, ILP provides an excellent means for multi-relational learning and data mining, and more generally for learning from structured data.

Relational Affordance Learning for Task-dependent Robot Grasping.- Positive and Unlabeled Relational Classification Through Label Frequency Estimation.- On Applying Probabilistic Logic Programming to Breast Cancer Data.- Logical Vision: One-Shot Meta-Interpretive Learning from Real Images.- Demystifying Relational Latent Representations.- Parallel Online Learning of Event Definitions.- Relational Restricted Boltzmann Machines: A Probabilistic Logic Learning Approach.- Parallel Inductive Logic Programming System for Super-linear Speedup.- Inductive Learning from State Transitions over Continuous Domains.- Stacked Structure Learning for Lifted Relational Neural Networks.- Pruning Hypothesis Spaces Using Learned Domain Theories.- An Investigation into the Role of Domain-knowledge on the Use of Embeddings.

Erscheinungsdatum
Reihe/Serie Lecture Notes in Artificial Intelligence
Lecture Notes in Computer Science
Zusatzinfo X, 185 p. 101 illus., 7 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 307 g
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Schlagworte Applications • Artificial Intelligence • computer programming • Computer Science • conference proceedings • Data Mining • Image Processing • Inductive Logic Programming • Informatics • Learning Algorithms • machine learning • Probabilistic Graphical Models • Programming Languages • relaltional learning • Relational Data Mining • Research • rule learning • Semantics • statistical relational learning
ISBN-13 9783319780894 / 9783319780894
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 53,15
Teil 2 der gestreckten Abschlussprüfung Fachinformatiker/-in …

von Dirk Hardy; Annette Schellenberg; Achim Stiefel

Buch | Softcover (2025)
Europa-Lehrmittel (Verlag)
CHF 37,90