Visual Knowledge Discovery and Machine Learning
Seiten
2018
|
1st ed. 2018
Springer International Publishing (Verlag)
978-3-319-73039-4 (ISBN)
Springer International Publishing (Verlag)
978-3-319-73039-4 (ISBN)
This book combines the advantages of high-dimensional data visualization and machine learning in the context of identifying complex n-D data patterns. It vastly expands the class of reversible lossless 2-D and 3-D visualization methods, which preserve the n-D information. This class of visual representations, called the General Lines Coordinates (GLCs), is accompanied by a set of algorithms for n-D data classification, clustering, dimension reduction, and Pareto optimization. The mathematical and theoretical analyses and methodology of GLC are included, and the usefulness of this new approach is demonstrated in multiple case studies. These include the Challenger disaster, world hunger data, health monitoring, image processing, text classification, market forecasts for a currency exchange rate, computer-aided medical diagnostics, and others. As such, the book offers a unique resource for students, researchers, and practitioners in the emerging field of Data Science.
Motivation, Problems and Approach.- General Line Coordinates (GLC).- Theoretical and Mathematical Basis of GLC.- Adjustable GLCs for decreasing occlusion and pattern simplification.- GLC Case Studies.- Discovering visual features and shape perception capabilities in GLC.- Interactive Visual Classification, Clustering and Dimension Reduction with GLC-L.- Knowledge Discovery and Machine Learning for Investment Strategy with CPC.
"The book is a good suggestion for a data scientist or someone who would like to specialise on GLCs ... it provides a helpful introduction along with a wide variety of case studies that help any scientist to familiarise with this method." (Angeliki Katsenou, Perception, Vol. 47 (12), December, 2018)
| Erscheinungsdatum | 07.02.2018 |
|---|---|
| Reihe/Serie | Intelligent Systems Reference Library |
| Zusatzinfo | XXI, 317 p. 274 illus., 263 illus. in color. |
| Verlagsort | Cham |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 672 g |
| Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
| Technik | |
| Schlagworte | collaborative visualization • Collocated Coordinates • Data Science • General Line Coordinates • Intelligent Systems • Knowledge Discovery • Lossless Visual Representation • machine learning • multidimensional data • Paired Coordinates • Parallel Coordinates • Shifted Coordinates • visual data mining • Visualization |
| ISBN-10 | 3-319-73039-8 / 3319730398 |
| ISBN-13 | 978-3-319-73039-4 / 9783319730394 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2025)
Reclam, Philipp (Verlag)
CHF 11,20
die materielle Wahrheit hinter den neuen Datenimperien
Buch | Hardcover (2024)
C.H.Beck (Verlag)
CHF 44,75
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …
Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20