Elliptic Functions
Seiten
1987
|
2., edition
Springer Berlin (Hersteller)
978-3-540-96508-4 (ISBN)
Springer Berlin (Hersteller)
978-3-540-96508-4 (ISBN)
Lese- und Medienproben
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
Elliptic functions parametrize elliptic curves, and the intermingling of the analytic and algebraic-arithmetic theory has been at the center of mathematics since the early part of the nineteenth century. The book is divided into four parts. In the first, Lang presents the general analytic theory starting from scratch. Most of this can be read by a student with a basic knowledge of complex analysis. The next part treats complex multiplication, including a discussion of Deuring's theory of l-adic and p-adic representations, and elliptic curves with singular invariants. Part three covers curves with non-integral invariants, and applies the Tate parametrization to give Serre's results on division points. The last part covers theta functions and the Kronecker Limit Formula. Also included is an appendix by Tate on algebraic formulas in arbitrary charactistic.
Contents: General Theory.- Complex Multiplication Elliptic Curves with Singular Invariants.- Elliptic Curves with Non-integral Invariants.- Theta Functions and Kronecker limit Formula.- Bibliography.- Index.
| Reihe/Serie | Graduate Texts in Mathematics ; 112 |
|---|---|
| Verlagsort | Berlin |
| Sprache | deutsch |
| Gewicht | 650 g |
| Einbandart | gebunden |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Schlagworte | Elliptische Funktion |
| ISBN-10 | 3-540-96508-4 / 3540965084 |
| ISBN-13 | 978-3-540-96508-4 / 9783540965084 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |