A Distribution-Free Theory of Nonparametric Regression
Springer-Verlag New York Inc.
978-0-387-95441-7 (ISBN)
Why Is Nonparametric Regression Important?.- How to Construct Nonparametric Regression Estimates?.- Lower Bounds.- Partitioning Estimates.- Kernel Estimates.- k-NN Estimates.- Splitting the Sample.- Cross-Validation.- Uniform Laws of Large Numbers.- Least Squares Estimates I: Consistency.- Least Squares Estimates II: Rate of Convergence.- Least Squares Estimates III: Complexity Regularization.- Consistency of Data-Dependent Partitioning Estimates.- Univariate Least Squares Spline Estimates.- Multivariate Least Squares Spline Estimates.- Neural Networks Estimates.- Radial Basis Function Networks.- Orthogonal Series Estimates.- Advanced Techniques from Empirical Process Theory.- Penalized Least Squares Estimates I: Consistency.- Penalized Least Squares Estimates II: Rate of Convergence.- Dimension Reduction Techniques.- Strong Consistency of Local Averaging Estimates.- Semirecursive Estimates.- Recursive Estimates.- Censored Observations.- Dependent Observations.
| Reihe/Serie | Springer Series in Statistics |
|---|---|
| Zusatzinfo | XVI, 650 p. |
| Verlagsort | New York, NY |
| Sprache | englisch |
| Maße | 156 x 234 mm |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik |
| ISBN-10 | 0-387-95441-4 / 0387954414 |
| ISBN-13 | 978-0-387-95441-7 / 9780387954417 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich