Data Science für Unternehmen (eBook)
432 Seiten
MITP (Verlag)
978-3-95845-548-1 (ISBN)
Die grundlegenden Konzepte der Data Science verstehen, Wissen aus Daten ziehen und für Vorhersagen und Entscheidungen nutzen
Die wichtigsten Data-Mining-Verfahren gezielt und gewinnbringend einsetzen
Zahlreiche Praxisbeispiele zur Veranschaulichung
Die anerkannten Data-Science-Experten Foster Provost und Tom Fawcett stellen in diesem Buch die grundlegenden Konzepte der Data Science vor, die für den effektiven Einsatz im Unternehmen von Bedeutung sind.
Sie erläutern das datenanalytische Denken, das erforderlich ist, damit Sie aus Ihren gesammelten Daten nützliches Wissen und geschäftlichen Nutzen ziehen können. Sie erfahren detailliert, welche Methoden der Data Science zu hilfreichen Erkenntnissen führen, so dass auf dieser Grundlage wichtige Entscheidungsfindungen unterstützt werden können.
Dieser Leitfaden hilft Ihnen dabei, die vielen zurzeit gebräuchlichen Data-Mining-Verfahren zu verstehen und gezielt und gewinnbringend anzuwenden. Sie lernen u.a., wie Sie:
Data Science in Ihrem Unternehmen nutzen und damit Wettbewerbsvorteile erzielen
Daten als ein strategisches Gut behandeln, in das investiert werden muss, um echten Nutzen daraus zu ziehen
Geschäftliche Aufgaben datenanalytisch angehen und den Data-Mining-Prozess nutzen, um auf effiziente Weise sinnvolle Daten zu sammeln
Das Buch beruht auf einem Kurs für Betriebswirtschaftler, den Provost seit rund zehn Jahren an der New York University unterrichtet, und nutzt viele Beispiele aus der Praxis, um die Konzepte zu veranschaulichen.
Das Buch richtet sich an Führungskräfte und Projektmanager, die Data-Science-orientierte Projekte managen, an Entwickler, die Data-Science-Lösungen implementieren sowie an alle angehenden Data Scientists und Studenten.
Aus dem Inhalt:
Datenanalytisches Denken lernen
Der Data-Mining-Prozess
Überwachtes und unüberwachtes Data Mining
Einführung in die Vorhersagemodellbildung: von der Korrelation zur überwachten Segmentierung
Anhand der Daten optimale Modellparameter finden mit Verfahren wie lineare und logistische Regression sowie Support Vector Machines
Prinzip und Berechnung der Ähnlichkeit
Nächste-Nachbarn-Methoden und Clustering
Entscheidungsanalyse I: Was ist ein gutes Modell
Visualisierung der Leistung von Modellen
Evidenz und Wahrscheinlichkeiten
Texte repräsentieren und auswerten
Entscheidungsanalyse II: Analytisches Engineering
Data Science und Geschäftsstrategie
| Erscheint lt. Verlag | 27.10.2017 |
|---|---|
| Reihe/Serie | mitp Business | mitp Business |
| Verlagsort | Frechen |
| Sprache | deutsch |
| Themenwelt | Mathematik / Informatik ► Informatik ► Netzwerke |
| Schlagworte | Big Data • Daten • Projektmanager |
| ISBN-10 | 3-95845-548-4 / 3958455484 |
| ISBN-13 | 978-3-95845-548-1 / 9783958455481 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich