Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Set Theory and Logic (eBook)

(Autor)

eBook Download: EPUB
2012
512 Seiten
Dover Publications (Verlag)
9780486139647 (ISBN)

Lese- und Medienproben

Set Theory and Logic - Robert R. Stoll
Systemvoraussetzungen
19,99 inkl. MwSt
(CHF 19,50)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Explores sets and relations, the natural number sequence and its generalization, extension of natural numbers to real numbers, logic, informal axiomatic mathematics, Boolean algebras, informal axiomatic set theory, several algebraic theories, and 1st-order theories.
Set Theory and Logic is the result of a course of lectures for advanced undergraduates, developed at Oberlin College for the purpose of introducing students to the conceptual foundations of mathematics. Mathematics, specifically the real number system, is approached as a unity whose operations can be logically ordered through axioms. One of the most complex and essential of modern mathematical innovations, the theory of sets (crucial to quantum mechanics and other sciences), is introduced in a most careful concept manner, aiming for the maximum in clarity and stimulation for further study in set logic. Contents include: Sets and Relations — Cantor's concept of a set, etc.Natural Number Sequence — Zorn's Lemma, etc.Extension of Natural Numbers to Real NumbersLogic — the Statement and Predicate Calculus, etc.Informal Axiomatic MathematicsBoolean AlgebraInformal Axiomatic Set TheorySeveral Algebraic Theories — Rings, Integral Domains, Fields, etc.First-Order Theories — Metamathematics, etc.Symbolic logic does not figure significantly until the final chapter. The main theme of the book is mathematics as a system seen through the elaboration of real numbers; set theory and logic are seen s efficient tools in constructing axioms necessary to the system. Mathematics students at the undergraduate level, and those who seek a rigorous but not unnecessarily technical introduction to mathematical concepts, will welcome the return to print of this most lucid work. "e;Professor Stoll . . . has given us one of the best introductory texts we have seen."e; — Cosmos. "e;In the reviewer's opinion, this is an excellent book, and in addition to its use as a textbook (it contains a wealth of exercises and examples) can be recommended to all who wish an introduction to mathematical logic less technical than standard treatises (to which it can also serve as preliminary reading)."e; — Mathematical Reviews.

Chapter 1 SETS AND RELATIONS 1. Cantor's Concept of a Set 2. The Basis of Intuitive Set Theory 3. Inclusion 4. Operations for Sets 5. The Algebra of Sets 6. Relations 7. Equivalence Relations 8. Functions 9. Composition and Inversion for Functions 10. Operations for Collections of Sets 11. Ordering RelationsChapter 2 THE NATURAL NUMBER SEQUENCE AND ITS GENERALIZATIONS 1. The Natural Number Sequence 2. Proof and Definition by Induction 3. Cardinal Numbers 4. Countable Sets 5. Cardinal Arithmetic 6. Order Types 7. Well-ordered Sets and Ordinal Numbers 8. "The Axiom of Choice, the Well-ordering Theorem, and Zorn's Lemma" 9. Further Properties of Cardinal Numbers 10. Some Theorems Equivalent to the Axiom of Choice 11. The Paradoxes of Intuitive Set TheoryChapter 3 THE EXTENSION OF THE NATURAL NUMBERS TO THE REAL NUMBERS 1. The System of Natural Numbers 2. Differences 3. Integers 4. Rational Numbers 5. Cauchy Sequences of Rational Numbers 6. Real Numbers 7. Further Properties of the Real Number SystemChapter 4 LOGIC 1. The Statement Calculus. Sentential Connectives 2. The Statement Calculus. Truth Tables 3. The Statement Calculus. Validity 4. The Statement Calculus. Consequence 5. The Statement Calculus. Applications 6. The Predicate Calculus. Symbolizing Everyday Language 7. The Predicate Calculus. A Formulation 8. The Predicate Calculus. Validity 9. The Predicate Calculus. ConsequenceChapter 5 INFORMAL AXIOMATIC MATHEMATICS 1. The Concept of an Axiomatic Theory 2. Informal Theories 3. Definitions of Axiomatic Theories by Set-theoretical Predicates 4. Further Features of Informal TheoriesChapter 6 BOOLEAN ALGEBRAS 1. A Definition of a Boolean Algebra 2. Some Basic Properties of a Boolean Algebra 3. Another Formulation of the Theory 4. Congruence Relations for a Boolean Algebra 5. Representations of Boolean Algebras 6. Statement Calculi as Boolean Algebras 7. Free Boolean Algebras 8. Applications of the Theory of Boolean Algebras to Statement Calculi 9. Further Interconnections between Boolean Algebras and Statement CalculiChapter 7 INFORMAL AXIOMATIC SET THEORY 1. The Axioms of Extension and Set Formation 2. The Axiom of Pairing 3. The Axioms of Union and Power Set 4. The Axiom of Infinity 5. The Axiom of Choice 6. The Axiom Schemas of Replacement and Restriction 7. Ordinal Numbers 8. Ordinal Arithmetic 9. Cardinal Numbers and Their Arithmetic 10. The von Neumann-Bernays-Gödel Theory of SetsChapter 8 SEVERAL ALGEBRAIC THEORIES 1. Features of Algebraic Theories 2. Definition of a Semigroup 3. Definition of a Group 4. Subgroups 5. Coset Decompositions and Congruence Relations for Groups 6. "Rings, Integral Domains, and Fields" 7. Subrings and Difference Rings 8. A Characterization of the System of Integers 9. A Characterization of the System of Rational Numbers 10. A Characterization of the Real Number SystemChapter 9 FIRST-ORDER THEORIES 1. Formal Axiomatic Theories 2. The Statement Calculus as a Formal Axiomatic Theory 3. Predicate Calculi of First Order as Formal Axiomatic Theories 4. First-order Axiomatic Theories 5. Metamathematics 6. Consistency and Satisfiability of Sets of Formulas 7. "Consistency, Completeness, and Categoricity of First-order Theories" 8. Turing Machines and Recursive Functions 9. Some Undecidable and Some Decidable Theories 10. Gödel's Theorems 11. Some Further Remarks about Set TheoryReferencesSymbols and NotationAuthor IndexSubject Index

Erscheint lt. Verlag 23.5.2012
Reihe/Serie Dover Books on Mathematics
Dover Books on Mathematics
Sprache englisch
Maße 140 x 140 mm
Themenwelt Mathematik / Informatik Mathematik
ISBN-13 9780486139647 / 9780486139647
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eine anwendungsorientierte Einführung

von Peter Tittmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 34,15
Stochastik: von Abweichungen bis Zufall

von René L. Schilling

eBook Download (2025)
De Gruyter (Verlag)
CHF 34,15