Lectures on the Coupling Method (eBook)
288 Seiten
Dover Publications (Verlag)
9780486153247 (ISBN)
An important tool in probability theory and its applications, the coupling method is primarily used in estimates of total variation distances. The method also works well in establishing inequalities, and it has proven highly successful in the study of Markov and renewal process asymptotics. This text represents a detailed, comprehensive examination of the method and its broad variety of applications. Readers progress from simple to advanced topics, with end-of-discussion notes that reinforce the preceding material. Topics include renewal theory, Markov chains, Poisson approximation, ergodicity, and Strassen's theorem. A practical and easy-to-use reference, this volume will accommodate the diverse needs of professionals in the fields of statistics, mathematics, and operational research, as well as those of teachers and students.
Introduction 1. Three Examples 2. An Outline 3. NotesChapter I. PreliminariesAppendix IIBibliographyIndex 1. What Is a Coupling? 2. The Coupling Inequality 3. Rates of Convergence 4. Weak Coupling 5. The gamma Coupling 6. The Polish Assumption 7. NotesChapter II. Discrete Theory 1. Renewal Theory 1. Basics 2. Stationarity. The Coupling 3. The Discrete Renewal Theorem 4. Finite Moments of T 5. Renewal Sequences 6. Notes 2. Markov Chains 7. Notation 8. Positive Recurrent Chains 9. Null-Recurrent Chains 10. An Observation 11. Notes 3. Random Walk 12. The Ornstein Coupling 13. Null-Recurrent Markov Chains 14. The Mineka Coupling 15. Blocks 16. The Harris Random Walk 17. A Multidimensional Random Walk 18. Notes 4. Card Shuffling 19. Basics 20. "Top to Random" Shuffling 21. Notes 5. Poisson Approximation 22. Basics 23. Another Simple Coupling 24. The Stein-Chen Method 25. An Example 26. NotesChapter III. Continuous Theory 1. Renewal Theory 2. Basics 3. Stationarity 4. Blackwell's Renewal Theorem 4. Bounds for U 5. An Exact Coupling 6. Finite Moments of T. Rate Results 7. Notes 2. Harris Chains 8. Basics 9. Harris Chains 10. Regeneration and Stationarity 11. Ergodicity 12. Random Walk 13. Notes 3. Maximal Coupling 14. The Coupling. Goldstein's Theorem 15. From Weak to Strong Coupling 16. Notes 4. Regenerative Processes 17. Basics. Stationarity 18. Coupling of Regenerative Processes 19. Notes 5. On Markov Processes 20. Some Remarks 21. Ergodicity 22. NotesChapter IV. Inequalities 1. Strassen's Theorem 1. Basics 2. The Theorem 3. Alternative Formulations 4. Notes 2. Domination 5. The General Result 6. Monotonicity and Convergence 7. Notes 3. Domination and Monotonicity of Markov Processes 8. Basics 9. A Monotonicity Result 4. Examples of Domination 10. Direct Constructions 11. Percolation 12. Bernstein Polynomials 13. Increasing Power Functions 14. Cox Processes 15. NotesChapter V. Intensity-Governed Processes 1. Birth and Death Processes 1. Basics 2. Ergodicity 3. Rates 4. Domination and Monotonicity 5. Notes 2. General Birth and Death Processes 6. Basics 7. Ergodicity 8. Networks 9. Propagations 10. Notes 3. Interacting Particle Systems 11. A Signpost. Basics and Examples 12. The Vasershtein Coupling 13. Attractiveness and Monotonicity 14. On the Example Processes 15. Notes 4. Embedding in Poisson Processes 16. A Multivariate Exponential Distribution 17. Embedding in a Bivariate Poisson Process 18. Urns and Boxes 19. On Free Parking Spaces 20. Notes 5. More Renewal Theory 21. Basics 22. The DFR Case 23. The IFR Case 24. Notes 6. On a Class of Point Processes 25. Basics 26. On the FDR Concept 27. The (A, m) Processes 28. NotesChapter VI. Diffusions 1. One-Dimensional Processes 1. Basics 2. Ergodicity. I Closed 3. Ergodicity. I Not Closed 4. The Strong Feller Property 5. Domination 6. Notes 2. Multidimensional Processes 7. Basics 8. Brownian Motion 9. Radial Drift 10. Another Reflection Coupling 11. NotesAppendix 1. Polish Spaces Appendix 1. A Quick survey Appendix 2. The Banach space bM subscript s Appendix 3. Notes Appendix 4. Epilogue Appendix 5. Some History Frequently Used Notation; References; Index
| Erscheint lt. Verlag | 15.8.2012 |
|---|---|
| Reihe/Serie | Dover Books on Mathematics |
| Sprache | englisch |
| Maße | 140 x 140 mm |
| Themenwelt | Mathematik / Informatik ► Mathematik |
| ISBN-13 | 9780486153247 / 9780486153247 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich