Complex Variables (eBook)
448 Seiten
Dover Publications (Verlag)
9780486134840 (ISBN)
The most important topics in the theory and application of complex variables receive a thorough, coherent treatment in this introductory text. Intended for undergraduates or graduate students in science, mathematics, and engineering, this volume features hundreds of solved examples, exercises, and applications designed to foster a complete understanding of complex variables as well as an appreciation of their mathematical beauty and elegance. Prerequisites are minimal; a three-semester course in calculus will suffice to prepare students for discussions of these topics: the complex plane, basic properties of analytic functions (including a rewritten and reorganized discussion of Cauchy's Theorem), analytic functions as mappings, analytic and harmonic functions in applications, and transform methods. Useful appendixes include tables of conformal mappings and Laplace transforms, as well as solutions to odd-numbered exercises. Students and teachers alike will find this volume, with its well-organized text and clear, concise proofs, an outstanding introduction to the intricacies of complex variables.
1. The complex plane 1.1 The complex numbers and the complex plane 1.1.1 A formal view of the complex numbers 1.2 Some geometry 1.3 Subsets of the plane 1.4 Functions and limits 1.5 The exponential, logarithm, and trigonometric functions 1.6 Line integrals and Green's theorem2. Basic properties of analytic functions 2.1 Analytic and harmonic functions; the Cauchy-Riemann equations 2.1.1 Flows, fields, and analytic functions 2.2 Power series 2.3 Cauchy's theorem and Cauchy's formula 2.3.1 The Cauchy-Goursat theorem 2.4 Consequences of Cauchy's formula 2.5 Isolated singularities 2.6 The residue theorem and its application to the evaluation of definite integrals3. Analytic functions as mappings 3.1 The zeros of an analytic function 3.1.1 The stability of solutions of a system of linear differential equations 3.2 Maximum modulus and mean value 3.3 Linear fractional transformations 3.4 Conformal mapping 3.4.1 Conformal mapping and flows 3.5 The Riemann mapping theorem and Schwarz-Christoffel transformations4. Analytic and harmonic functions in applications 4.1 Harmonic functions 4.2 Harmonic functions as solutions to physical problems 4.3 Integral representations of harmonic functions 4.4 Boundary-value problems 4.5 Impulse functions and the Green's function of a domain5. Transform methods 5.1 The Fourier transform: basic properties 5.2 Formulas Relating u and û 5.3 The Laplace transform 5.4 Applications of the Laplace transform to differential equations 5.5 The Z-Transform 5.5.1 The stability of a discrete linear systemAppendix 1. The stability of a discrete linear systemAppendix 2. A Table of Conformal MappingsAppendix 3. A Table of Laplace Transforms Solutions to Odd-Numbered Exercises Index
| Erscheint lt. Verlag | 25.4.2012 |
|---|---|
| Reihe/Serie | Dover Books on Mathematics |
| Sprache | englisch |
| Maße | 170 x 170 mm |
| Gewicht | 612 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| ISBN-13 | 9780486134840 / 9780486134840 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich