Introduction to Lebesgue Integration and Fourier Series (eBook)
159 Seiten
Dover Publications (Verlag)
9780486137476 (ISBN)
This book arose out of the authors' desire to present Lebesgue integration and Fourier series on an undergraduate level, since most undergraduate texts do not cover this material or do so in a cursory way. The result is a clear, concise, well-organized introduction to such topics as the Riemann integral, measurable sets, properties of measurable sets, measurable functions, the Lebesgue integral, convergence and the Lebesgue integral, pointwise convergence of Fourier series and other subjects. The authors not only cover these topics in a useful and thorough way, they have taken pains to motivate the student by keeping the goals of the theory always in sight, justifying each step of the development in terms of those goals. In addition, whenever possible, new concepts are related to concepts already in the student's repertoire. Finally, to enable readers to test their grasp of the material, the text is supplemented by numerous examples and exercises. Mathematics students as well as students of engineering and science will find here a superb treatment, carefully thought out and well presented , that is ideal for a one semester course. The only prerequisite is a basic knowledge of advanced calculus, including the notions of compactness, continuity, uniform convergence and Riemann integration.
Chapter 1. The Riemann Integral 1. Definition of the Riemann Integral 2. Properties of the Riemann Integral 3. Examples 4. Drawbacks of the Riemann Integral 5. ExercisesChapter 2. Measurable Sets 6. Introduction 7. Outer Measure 8. Measurable Sets 9. ExercisesChapter 3. Properties of Measurable Sets 10. Countable Additivity 11. Summary 12. Borel Sets and the Cantor Set 13. Necessary and Sufficient Conditions for a Set to be Measurable 14. Lebesgue Measure for Bounded Sets 15. Lebesgue Measure for Unbounded Sets 16. ExercisesChapter 4. Measurable Functions 17. Definition of Measurable Functions 18. Preservation of Measurability for Functions 19. Simple Functions 20. ExercisesChapter 5. The Lebesgue Integral 21. The Lebesgue Integral for Bounded Measurable Functions 22. Simple Functions 23. Integrability of Bounded Measurable Functions 24. Elementary Properties of the Integral for Bounded Functions 25. The Lebesgue Integral for Unbounded Functions 26. ExercisesChapter 6. Convergence and The Lebesgue Integral 27. Examples 28. Convergence Theorems 29. A Necessary and Sufficient Condition for Riemann Integrability 30. Egoroff's and Lusin's Theorems and an Alternative Proof of the Lebesgue Dominated Convergence Theorem 31. ExercisesChapter 7. Function Spaces and £ superscript 2 32. Linear Spaces 33. The Space £ superscript 2 34. ExercisesChapter 8. The £ superscript 2 Theory of Fourier Series 35. Definition and Examples 36. Elementary Properties 37. £ superscript 2 Convergence of Fourier Series 38. ExercisesChapter 9. Pointwise Convergence of Fourier Series 39. An Application: Vibrating Strings 40. Some Bad Examples and Good Theorems 41. More Convergence Theorems 42. Exercises Appendix Logic and Sets Open and Closed Sets Bounded Sets of Real Numbers Countable and Uncountable Sets (and discussion of the Axiom of Choice) Real Functions Real Sequences Sequences of Functions Bibliography; Index
| Erscheint lt. Verlag | 30.4.2012 |
|---|---|
| Reihe/Serie | Dover Books on Mathematics |
| Sprache | englisch |
| Maße | 160 x 160 mm |
| Gewicht | 277 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| ISBN-13 | 9780486137476 / 9780486137476 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich