Introduction to Logic (eBook)
336 Seiten
Dover Publications (Verlag)
9780486138053 (ISBN)
PREFACEINTRODUCTIONPART I-PRINCIPLES OF INFERENCE AND DEFINITION 1. THE SENTENTIAL CONNECTIVES 1.1 Negation and Conjunction 1.2 Disjunction 1.3 Implication: Conditional Sentences 1.4 Equivalence: Biconditional Sentences 1.5 Grouping and Parentheses 1.6 Truth Tables and Tautologies 1.7 Tautological Implication and Equivalence 2. SENTENTIAL THEORY OF INFERENCE 2.1 Two Major Criteria of Inference and Sentential Interpretations 2.2 The Three Sentential Rules of Derivation 2.3 Some Useful Tautological Implications 2.4 Consistency of Premises and Indirect Proofs 3. SYMBOLIZING EVERYDAY LANGUAGE 3.1 Grammar and Logic 3.2 Terms 3.3 Predicates 3.4 Quantifiers 3.5 Bound and Free Variables 3.6 A Final Example 4. GENERAL THEORY OF INFERENCE 4.1 Inference Involving Only Universal Quantifiers 4.2 Interpretations and Validity 4.3 Restricted Inferences with Existential Quantifiers 4.4 Interchange of Quantifiers 4.5 General Inferences 4.6 Summary of Rules of Inference 5. FURTHER RULES OF INFERENCE 5.1 Logic of Identity 5.2 Theorems of Logic 5.3 Derived Rules of Inference 6. POSTSCRIPT ON USE AND MENTION 6.1 Names and Things Named 6.2 Problems of Sentential Variables 6.3 Juxtaposition of Names 7. TRANSITION FROM FORMAL TO INFORMAL PROOFS 7.1 General Considerations 7.2 Basic Number Axioms 7.3 Comparative Examples of Formal Derivations and Informal Proofs 7.4 Examples of Fallacious Informal Proofs 7.5 Further Examples of Informal Proofs 8. THEORY OF DEFINITION 8.1 Traditional Ideas 8.2 Criteria for Proper Definitions 8.3 Rules for Proper Definitions 8.4 Definitions Which are Identities 8.5 The Problem of Divison by Zero 8.6 Conditional Definitions 8.7 Five Approaches to Division by Zero 8.8 Padoa's Principle and Independence of Primitive SymbolsPART II-ELEMENTARY INTUITIVE SET THEORY 9. SETS 9.1 Introduction 9.2 Membership 9.3 Inclusion 9.4 The Empty Set 9.5 Operations on Sets 9.6 Domains of Individuals 9.7 Translating Everyday Language 9.8 Venn Diagrams 9.9 Elementary Principles About Operations on Sets 10. RELATIONS 10.1 Ordered Couples 10.2 Definition of Relations 10.3 Properties of Binary Relations 10.4 Equivalence Relations 10.5 Ordering Relations 10.6 Operations on Relations 11. FUNCTIONS 11.1 Definition 11.2 Operations on Functions 11.3 Church's Lambda Notation 12. SET-THEORETICAL FOUNDATIONS OF THE AXIOMATIC METHOD 12.1 Introduction 12.2 Set-Theoretical Predicates and Axiomatizations of Theories 12.3 Ismorphism of Models for a Theory 12.4 Example: Profitability 12.5 Example: MechanicsINDEX
| Erscheint lt. Verlag | 12.7.2012 |
|---|---|
| Reihe/Serie | Dover Books on Mathematics |
| Sprache | englisch |
| Maße | 140 x 140 mm |
| Gewicht | 349 g |
| Themenwelt | Mathematik / Informatik ► Mathematik |
| ISBN-13 | 9780486138053 / 9780486138053 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich