Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Quantum Computing:An Environment for Intelligent Large Scale Real Application (eBook)

eBook Download: PDF
2017 | 1st ed. 2018
505 Seiten
Springer International Publishing (Verlag)
978-3-319-63639-9 (ISBN)

Lese- und Medienproben

Quantum Computing:An Environment for Intelligent Large Scale Real Application -
Systemvoraussetzungen
203,29 inkl. MwSt
(CHF 198,60)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book highlights practical quantum key distribution systems and research on the implementations of next-generation quantum communication, as well as photonic quantum device technologies. It discusses how the advances in quantum computing and quantum physics have allowed the building, launching and deploying of space exploration systems that are capable of more and more as they become smaller and lighter. It also presents theoretical and experimental research on the potential and limitations of secure communication and computation with quantum devices, and explores how security can be preserved in the presence of a quantum computer, and how to achieve long-distance quantum communication. The development of a real quantum computer is still in the early stages, but a number of research groups have investigated the theoretical possibilities of such computers.

Preface 6
Contents 8
Quantum in Network Cryptology 11
Quantum Information Protocols for Cryptography 12
1 Introduction to Quantum Cryptography 12
1.1 Concise Introduction to Preliminary Mathematics and Fundamentals of Quantum Computation 14
2 Quantum Key Distribution Protocols 18
2.1 BB84 19
2.2 E91 24
3 Quantum Secret Sharing Protocols (QSS) 25
4 Quantum Secure Direct Communication Protocols (QSDC) 26
4.1 QSDC Deng-Long Protocol 27
4.2 QSDC Deng Protocol 28
5 Deterministic Secure Quantum Communication Protocols (DSQC) 29
References 30
2 Applications of Quantum Mechanics in Secure Communication 33
Abstract 33
1 Introduction 34
2 Quantum Mechanics 34
2.1 States Space and Measurement 35
2.2 Composite Quantum Systems and Entanglement, Hidden Variables and Bell Inequalities 36
2.3 No Cloning 36
3 Using Quantum Effects in Secure Communication 37
3.1 Quantum Teleportation 37
3.2 Quantum Cryptography 38
4 Secure Quantum Communication 40
5 Quantum Key Distribution in Satellite Communication 40
5.1 BB84 Quantum Cryptography Protocol 41
5.2 Entangled Photon Based Quantum Cryptography Protocol 42
6 Free-Space Quantum Cryptography 44
7 Free-Space Quantum Cryptography in Satellite Communication 45
8 Conclusions 46
References 46
3 Different Architectures of Quantum Key Distribution Network 49
Abstract 49
1 Secure Communication Based on Quantum Cryptography (SECOQC) Network 50
2 Defense Advanced Research Projects Agency (DARPA) Network 51
3 Grid Security Model Based on QKD Network 56
4 Deterministic Secure Direct Communication Using Entanglement 57
5 Secret Key Sharing with GHZ 60
6 Quantum Teleportation of EPR Pair by Three-Particle Entanglement 61
7 Three-Party Quantum Secure Direct Communication with GHZ 64
References 67
4 Quantum Computing and Cryptography: An Overview 70
Abstract 70
1 Introduction 70
2 Classical and Quantum Bit 71
3 Quantum Bit Transformation 72
4 Single Quantum Bit Gates 73
4.1 Pauli X Gate 73
4.2 Pauli Y Gate 74
4.3 Pauli Z Gate 74
4.4 Hadamard Gate 75
5 Two Quantum Bits Gates 76
5.1 Controlled-NOT 76
5.2 SWAP Gate 77
6 Three Quantum Bits Gates 77
6.1 TOFFOLI (Controlled-Controlled-NOT) Gate 77
6.2 FREDKIN (Controlled-SWAP) 78
7 Entanglement and Measurement 79
7.1 Bell States 80
7.2 GHZ States, Measurement and Source 82
8 Quantum Cryptography 83
8.1 Security Requirements of Communication 84
8.2 Quantum Private Communication Model 84
8.3 No Cloning Theorem 85
8.4 Quantum Key Distribution 87
8.5 Basic Stages of Quantum Key Distribution 88
8.6 Quantum Teleportation and Super-Dense Coding 88
9 Classical Cryptography and Multicast 93
9.1 Classical Private Communication Model 93
9.2 Symmetric and Asymmetric Cryptography 95
9.3 Diffie-Hellman Algorithm 96
9.4 Types of Multiparty Communication 97
10 Group Key Management 98
10.1 Group Key Management Categories 99
10.2 Group Key Management Responsibilities 99
10.3 Group Key Security Requirements 100
10.4 IPsec 101
References 102
5 Quantum Key Distribution Over Multi-point Communication System: An Overview 108
Abstract 108
1 Introduction 109
2 The Basic Phases of Constructing Point-to-Multipoint Quantum Key Distribution 111
3 General Architecture of Point to Multipoint QKD (QKDP2MP) 111
4 General Architecture of Point to Multipoint Quantum Key Distribution Network Based on Quantum-Back-Bone Key Distribution Link Interface 113
5 General Architecture of Point to Multipoint QKD Using a Layered Architecture 115
6 Quantum Key Distribution Transport Layer Logical Architecture 117
7 Connection Establishment and Termination 119
References 126
6 IPsec Multicast Architecture Based on Quantum Key Distribution, Quantum Secret Sharing and Measurement 129
Abstract 129
1 Introduction 130
2 General Logical and Physical Architecture of the Decentralized Multicast QKD?VPN 132
3 The Architecture of Decentralized QKD Node by Node 132
4 The Architecture of Decentralized VPN Node by Node 133
5 The Physical Architecture of WDM–TDM Decentralized Network 134
6 The Proposed Centralized IPsec Multicast Architecture 137
6.1 Phase One 137
7 Quantum Key Generation and Distribution 140
7.1 Phase Two 140
8 Encryption and Decryption 144
9 Confidentiality and Authentication 145
References 146
7 Multi-parties Quantum Secure Direct Communication with Authentication 149
Abstract 149
1 Introduction 150
2 Authentication Process 154
3 Communication Process Between Two Disjoint Users with Partial and Full Cooperation of Quantum Server 156
3.1 Partial Cooperation Process 156
3.2 Full Cooperation Process 160
4 Communication Process Between Three Disjoint Users with Partial and Full Cooperation of Quantum Server 163
4.1 Partial Cooperation Process 163
4.2 Full Cooperation Process 168
5 Generalization of Communication Process Between N Disjoint Users with Partial and Full Cooperation of Quantum Server 170
5.1 Partial Cooperation Process 170
5.2 Full Cooperation Process 171
6 Authentication Security Analysis 172
6.1 Masquerade as Dishonest Disjoint User 172
6.2 Substitution Fraudulent Attack 174
6.2.1 One-way Channel Substitution Fraudulent Attack 174
6.2.2 Two-Way Channel Substitution Fraudulent Attack 175
7 Communication Process Security Analysis 186
References 187
Quantum Cryptography, Quantum Communication, and Quantum Computing in a Noisy Environment 191
1 Introduction 191
2 A Review of Deutsch's Algorithm 194
3 Failing Deutsch's Algorithm 196
4 Deutsch's Algorithm Using the Bell State 197
5 Quantum Key Distribution Based on Deutsch's Algorithm 199
6 A Review of the Bernstein-Vazirani Algorithm 199
7 Quantum Communication Based on the Bernstein-Vazirani Algorithm 202
8 An Error Correction Based on the Bernstein-Vazirani Algorithm 203
9 The Bernstein-Vazirani Algorithm in a Noisy Environment 205
10 Conclusions 209
References 210
An Efficient Scheme for Video Delivery in Wireless Networks 212
1 Introduction 213
1.1 Video Streaming Over Wireless Networks 213
1.2 WLAN/WiFi Networks 214
1.3 WiMAX Networks 215
1.4 Mobile WiMAX 216
2 Related Work 218
3 The Proposed Schema for Video Delivery in Wireless Networks 218
3.1 The Mobility Scheme 218
3.2 Network Entry Process 220
3.3 Channel Scanning Process 220
3.4 The Proposed Mobility Model 221
4 Conclusion 229
References 229
Quantum in Physics 231
QFT + NP = P Quantum Field Theory (QFT): A Possible Way of Solving NP-Complete Problems in Polynomial Time 232
1 Pre-Introduction: Feasible and Intractable 232
2 Introduction: Equality of Computable Real Numbers Is Algorithmically Undecidable 233
3 Introduction Continued: A Heuristic Use of the Result that Equality of Computable Real Numbers Is Undecidable 234
4 A New Physical Phenomenon 236
5 How to Use the New Physical Phenomenon to Solve NP-Complete Problems in Polynomial Time: Definitions and the Main Result 239
5.1 Motivations for the New Model of Computation 239
5.2 Informal Description of the QFT Computer 241
5.3 Definitions 242
5.4 Main Result and Its Proof 244
5.5 This Result Is Not so Surprising Since Our ``computer'' uses Quantum Effects 249
6 Open Problems 249
6.1 Engineering Problem: How Can We Implement These computations? 249
6.2 Theoretical Problem: What Else Can We Compute on a Quantum Field Theory Computer? 250
References 251
(Hypothetical) Negative Probabilities Can Speed Up Uncertainty Propagation Algorithms 253
1 Introduction 253
2 Uncertainty Propagation: Reminder and Precise Formulation of the Problem 254
3 Existing Algorithms for Uncertainty Propagation and Their Limitations 260
4 Analysis of the Problem and the Resulting Negative-Probability-Based Fast Algorithm for Uncertainty Quantification 265
References 273
New Method of Obtaining the Kochen-Specker Theorem 274
1 Introduction 274
2 Notations and Preparation to Get New Type of No-Hidden-Variables Theorem of the KS Type 276
3 New Type of No-Hidden-Variables Theorem of the KS Type 278
3.1 The Existence of the Bloch Sphere 278
3.2 The Existence of Hidden Measurement Outcome Which Is pm1 280
3.3 Contradiction 282
4 High Dimensional No-Hidden-Variables Theorem of the KS Type 283
4.1 The Existence of the Bloch Sphere 283
4.2 The Hidden Variables Theory 285
4.3 Contradiction 286
5 Two-Dimensional No-Hidden-Variables Theorem of the KS Type 287
5.1 A Wave Function Analysis 287
5.2 The Hidden Variables Theory 287
5.3 Contradiction 289
6 Conclusions 289
References 290
Proposal for a Quantum-Based Memory for Storing Classical Information and the Connection Between Molecular Dynamics Simulations and the Landauer's Principle 292
1 Introduction 293
2 Class of Universal Gates 301
3 Class of Universal Hamiltonians 302
4 A Classical Model for Erasing One Bit of Information 303
5 Molecular Dynamics, Statistical Ensembles and Landauer's Principle 305
5.1 Microcanonical Ensemble Approach 305
5.2 Canonical Ensemble Approach 305
6 Results 306
7 Discussion 312
References 315
14 Morphogenetic Sources in Quantum, Neural and Wave Fields: Part 1 318
Abstract 318
1 Introduction 319
2 Generation of Morphogenetic Field by Computation of the Sources and Superposition of Fields 320
3 Quantum Computer Theorems and Connection with the Projection Operator 336
4 Conclusion 349
References 350
15 Morphogenetic Sources in Quantum, Neural and Wave Fields: Part 2 352
Abstract 352
1 Introduction 353
2 Oracle in Quantum Computer and Projection Operator 354
3 Projection Operator and Solution by One Step of Neural Network 363
4 Expansion of the One Step Method as Solution of Neural Contradictions 364
5 Conclusion 383
References 385
Quantum in Intelligent Applications 387
16 Quantum Inspired Evolutionary Algorithm in Load Frequency Control of Multi-area Interconnected Thermal Power System with Non-linearity 388
Abstract 388
1 Introduction 389
2 System Investigated 393
3 Control Strategy 394
4 Quantum Inspired Algorithms 395
4.1 Evolutionary Computing 396
4.2 Genetic Algorithm 397
4.3 Quantum Computing 398
4.4 Qubit Representation 399
4.5 Quantum Operator 400
4.6 Quantum Inspired Evolutionary Algorithm 401
4.7 Quantum Inspired Genetic Algorithm 402
5 The Proposed QIEA Based PID Controller Optimization Algorithm 403
6 Result and Discussion 403
6.1 Design of GIEA Optimized PID Controller 403
6.2 Performance Evaluation of Three Are Interconnected Power System with QIEA Optimized PID Controller 405
7 Conclusion 408
References 412
Optimal Distributed Generation Allocation Using Quantum Inspired Particle Swarm Optimization 417
1 Distributed Generation (DG) Allocation 418
1.1 Common Objective for DGA 419
1.2 Operational and Electrical Constraints 420
2 Particle Swarm Optimization (PSO) 421
3 Quantum Particle Swarm Optimization (QPSO) 422
4 Simulation Results 424
5 Conclusion 427
References 428
A Boosting-Based Decision Fusion Method for Learning from Large, Imbalanced Face Data Set 431
1 Introduction 431
2 Related Work 433
3 Multi-class Boosting for Learning from Imbalanced Face Data 434
4 Experiments and Discussion 438
4.1 Experiment Settings 438
4.2 Performance Analysis 439
4.3 The Attenuation Factor (?) 441
4.4 Efficiency Analysis 442
5 Conclusion 444
References 445
19 Automatic Construction of Aerial Corridor from Discrete LiDAR Point Cloud 447
Abstract 447
1 Introduction 448
2 Aerial Corridor and Privacy Protection 449
2.1 Digital Terrain Model Construction 450
2.2 Space Zoning and Route Visualization for UASs 451
3 Experimental Results and Discussion 452
4 Conclusion 461
References 462
20 SVD-DCT Based Medical Image Watermarking in NSCT Domain 464
Abstract 464
1 Introduction 465
2 Related Work 466
2.1 Spatial Domain Image Watermarking 466
2.2 Transform Domain Image Watermarking 467
2.3 Intelligent and Adaptive Image Watermarking Techniques 470
3 Theoretical Background 470
3.1 Non Sub-sampled Contourlet Transform (NSCT) 470
3.2 Discrete Cosine Transform (DCT) 471
3.3 Singular Value Decomposition 472
4 The Proposed Method 472
4.1 Embedding Process 472
4.2 Recovery Process 473
5 Results and Discussion 474
6 Conclusions 481
References 482
The Utilization of Quantum Inspired Computational Intelligent in Power Systems Optimization 486
1 Introduction to the Power Systems Optimization Techniques 487
1.1 Classical and Conventional Algorithms 487
1.2 Intelligence Based Algorithms 489
1.3 Nature Inspired Search Methods 490
1.4 Hybrid Intelligent Techniques 491
2 QPSO in Power System Problems 492
2.1 Unit Commitment/Hydrothermal System Scheduling 493
2.2 Economic Dispatch 494
2.3 Load Forecasting 496
2.4 Utility Based Optimizations 497
3 Conclusion 498
References 498

Erscheint lt. Verlag 13.10.2017
Reihe/Serie Studies in Big Data
Studies in Big Data
Zusatzinfo IX, 505 p. 203 illus.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik
Schlagworte Big Data • Intelligent Systems • Quantum Computing • Quantum Data Processing
ISBN-10 3-319-63639-1 / 3319636391
ISBN-13 978-3-319-63639-9 / 9783319636399
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Die Grundlage der Digitalisierung

von Knut Hildebrand; Michael Mielke; Marcus Gebauer

eBook Download (2025)
Springer Fachmedien Wiesbaden (Verlag)
CHF 29,30
Die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

eBook Download (2024)
C.H.Beck (Verlag)
CHF 17,55